
231

Run-Time Prevention of So�ware Integration Failures of

Machine Learning APIs

CHENGCHENG WAN, East China Normal University, China

YUHAN LIU, University of Chicago, USA

KUNTAI DU, University of Chicago, USA

HENRY HOFFMANN, University of Chicago, USA

JUNCHEN JIANG, University of Chicago, USA

MICHAEL MAIRE, University of Chicago, USA

SHAN LU,Microsoft / University of Chicago, USA

Due to the under-speci�ed interfaces, developers face challenges in correctly integrating machine learning
(ML) APIs in software. Even when the ML API and the software are well designed on their own, the resulting
application misbehaves when the API output is incompatible with the software. It is desirable to have an
adapter that converts ML API output at runtime to better �t the software need and prevent integration failures.

In this paper, we conduct an empirical study to understand ML API integration problems in real-world
applications. Guided by this study, we present SmartGear, a tool that automatically detects and converts
mismatching or incorrect ML API output at run time, serving as a middle layer between ML API and software.
Our evaluation on a variety of open-source applications shows that SmartGear detects 70% incompatible API
outputs and prevents 67% potential integration failures, outperforming alternative solutions.

CCS Concepts: • Software and its engineering → Software defect analysis; • Computing methodologies

→Machine learning; • Information systems→ RESTful web services.

Additional Key Words and Phrases: software integration failure, machine learning API, run-time patching

ACM Reference Format:

Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu. 2023.
Run-Time Prevention of Software Integration Failures of Machine Learning APIs. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 231 (October 2023), 28 pages. https://doi.org/10.1145/3622806

1 INTRODUCTION

1.1 Motivation

Machine learning cloud APIs [Amazon 2022a; Google 2022a; IBM 2022; Microsoft 2022a], referred
to as ML APIs in this paper, o�er e�ective solutions for a spectrum of cognitive tasks, relieving
programmers from the onerous task of designing, training, and hosting their own machine learning
models. Consequently, these APIs are widely used in software applications to solve a variety of

Authors’ addresses: Chengcheng Wan, ccwan@sei.ecnu.edu.cn, National Trusted Embedded Software Engineering
Technology Research Center, East China Normal University, China; Yuhan Liu, yuhanl@uchicago.edu, Department of
Computer Science, University of Chicago, USA; Kuntai Du, kuntai@uchicago.edu, Department of Computer Science,
University of Chicago, USA; Henry Ho�mann, hankho�mann@cs.uchicago.edu, Department of Computer Science,
University of Chicago, USA; Junchen Jiang, junchenj@uchicago.edu, Department of Computer Science, University of
Chicago, USA, junchenj@uchicago.edu; Michael Maire, mmaire@uchicago.edu, Department of Computer Science, University
of Chicago, USA; Shan Lu, shanlu@uchicago.edu, Department of Computer Science, Microsoft / University of Chicago, USA.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART231
https://doi.org/10.1145/3622806

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-9162-9688
HTTPS://ORCID.ORG/0009-0002-5957-5071
HTTPS://ORCID.ORG/0000-0002-3964-4079
HTTPS://ORCID.ORG/0000-0003-0816-8150
HTTPS://ORCID.ORG/0000-0002-6877-1683
HTTPS://ORCID.ORG/0000-0002-9778-6673
HTTPS://ORCID.ORG/0000-0002-0757-4600
https://doi.org/10.1145/3622806
https://orcid.org/0000-0001-9162-9688
https://orcid.org/0009-0002-5957-5071
https://orcid.org/0000-0002-3964-4079
https://orcid.org/0000-0003-0816-8150
https://orcid.org/0000-0002-6877-1683
https://orcid.org/0000-0002-9778-6673
https://orcid.org/0000-0002-0757-4600
https://doi.org/10.1145/3622806

231:2 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

1 TARGETS = ['Car','Van','Truck ','Boat','Toy vehicle ']

2 image = types.Image(content=street_view_image)

3 response = client.object_localization(image=image)

4 for obj in response.localized_object_annotations:

5 if obj.name in TARGETS:

6 predict_flood_depth(obj)

Fig. 1. Flood-Depths, a flood detection application [Flood-Depths 2021] using Google Cloud API.

Vehicle

Video frame 1 Video frame 2

[Incorrectness]
Missing Object

[Mismatch]
Unexpected Label

Vehicle
Van

Fig. 2. Two video frames that cause the flood detection application to misbehave.

real-world problems [Das and Behera 2017; Wan et al. 2021]. Unfortunately, these applications
often experience integration failures in their use of ML APIs, a type of failures that occur when the
output of an API invocation is incompatible with the software component that uses this output.
Integration failures are widespread in applications that use ML APIs due to under-speci�ed

interfaces of the latter. This phenomenon is particularly visible in two ways. First, every cognitive
task performed by an ML API typically has more than one correct answer; unfortunately, state-of-
the-art ML APIs do not specify which answer(s) out of the multiple correct ones they would produce.
For example, there are many di�erent and correct ways to describe an object, in terms of textile,
color, usage, and others. Human beings naturally know what (type of) description matches their
conversation and activity context. However, ML APIs cannot guarantee to generate output that �ts
the expectation of the software , and the software also cannot accommodate the mismatched API
output, which leads to integration failures at run time.
Second, the model used by an ML API is inherently probabilistic, whose outputs are only

statistically reliable over many input samples; unfortunately, state-of-the-art ML APIs do not
specify whether or how likely their output for a given input might be incorrect1. Without that
information, software typically treats the output of an ML API as always correct. This leads to
integration failures when the output occasionally is incorrect, which is inevitable for ML APIs.
To better understand these integration challenges and their consequences, consider Flood-

Depths [Flood-Depths 2021], an open-source application that uses vehicles as a reference to estimate
�ood depth. As shown in Figure 1, this application �rst identi�es objects in a street_view_image
using an ML API. It then iterates through all the identi�ed objects (Line 4), and invokes �ood-depth
prediction upon every object whose label, stored in the name �eld, matches one of the vehicle-related
keywords in the TARGETS list, de�ned on Line 1.
This code snippet seems straightforward on its own and the Google Vision API object_

localization has a high accuracy. However, they do not work well when integrated together.

1Some APIs produce a con�dence score to estimate how likely the output is correct. Previous work showed this estimation
to be inaccurate, with similar scores produced for correct and incorrect outputs [Bai et al. 2021; Wang et al. 2021a].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:3

Figure 2 shows the API outputs on two adjacent frames in a video. As we can see, the left car is
successfully identi�ed by the API in both frames, and is labeled as “vehicle”. However, without
a clear API speci�cation, software developers do not anticipate the “vehicle” output and do not
include it in the TARGETS list. As a result of this correct and yet unexpected output (“vehicle”), this
car will be mistakenly skipped in the �ood-depth prediction. Furthermore, the van in the middle is
correctly identi�ed in frame 1, but gets missed in the almost identical frame 2. Again, lacking API
speci�cation, the software do not anticipate such incorrect output, and would omit this van in the
�ood-depth prediction of frame 2. With these vehicles mistakenly skipped, software underestimates
or even completely fails to predict �ood depth.

As we will see in Section 3, similar problems occur widely in software applications that use ML
APIs. The straightforward way of integrating ML APIs, like that in Figure 1, cannot tolerate API
results that are out of context or occasionally incorrect, which leads to software misbehavior.
Previous works have not tackled ML API integration failures. They address either problems

inside ML APIs [Chen et al. 2022c, 2020b; Xie et al. 2022] or problems inside the software that uses
ML APIs [Wan et al. 2021, 2022], but not the integration problems in between. Speci�cally, several
recent work improves the quality of ML software by selecting the most accurate ML API [Chen et al.
2020b] or API ensemble [Chen et al. 2022c; Xie et al. 2022] from several cloud service providers.
These techniques only tackle the issues inside the ML component, but do not fundamentally resolve
the under-speci�ed ML-API interfaces and hence integration failures. Another line of recent work
identi�es some ML API misuse patterns [Wan et al. 2022] and o�ers ways to test ML software [Wan
et al. 2021]. The misuse patterns identi�ed so far (e.g., picking the wrong ML API; using higher than
necessary input resolution; interpreting �oating-point output incorrectly) do not cover integration
failures; the testing support o�ered so far may occasionally expose integration failures under
specially designed test inputs, but cannot help detect or reduce integration failures at run time.

1.2 Challenges

It is desirable to have an adapter that converts ML API output at run time to better �t the software
component that uses the output, compensating for the under-speci�ed interfaces of ML APIs and
reducing integration failures. To design such an adapter, there are several challenges.

1) How to judge whether an ML API output matches the expectation of software? Lacking ML API
speci�cation, software developers do not know what output they may get from an API invocation
and do not have a standard way to specify what output they expect. For example, invoking an
object detection API, developers may expect the API output to describe a speci�c aspect of an object
or to fall into a speci�c set of labels. How to automatically extract that expectation and hence judge
whether an API output matches the expectation of software is an open question.

2) How to judge whether an ML API output is correct? Lacking ML API speci�cation, it is di�cult
to know which speci�c output of an ML API invocation would be wrong. In fact, judging the
correctness of ML APIs that emulate human cognition tasks typically requires human e�ort, which
is di�cult to carry out during run-time detection.
3) How to conduct compatibility checking and conversion with low overhead? High overhead

is not acceptable for software users. Consequently, we cannot use expensive techniques, such as
re-training and updating neural network models at run time, which take hours.

1.3 Contributions

In this paper, we �rst conduct an empirical study to understand the challenges of integratingmachine
learning cloud APIs into software and the consequences of integration problems. Speci�cally, we
examine a set of 55 open-source applications that use ML API outputs to make control-�ow

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:4 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

···

Software Cloud Service···

ML API Input

Resolve

Mismatch

Resolve

Incorrectness

Converted ML
API Output

ML API
Output

Invoke ML API

Save Result

SmartGear

Fig. 3. SmartGear run-time framework.

decisions2. We run each application with 100 test inputs and manually check their execution results.
We �nd that on average 15.9% of the test inputs lead to failures. Among these failures, 99.9% of them
are non-fail-stop failures related to ML APIs. Since these failures do not throw any exception, they
are di�cult to detect. All of these failures are caused by integration problems: about two-thirds of
the failures are caused by correct and yet mismatched ML API outputs, and the other one-third
of the failures are caused by incorrect ML API outputs. We further categorize these two types of
problems into several sub-types, with details presented in Section 3.
Guided by our study, we propose SmartGear. SmartGear serves as a middle layer between ML

APIs and software that uses ML APIs, as illustrated in Figure 3. It reduces the number of ML API
integration failures by detecting and converting incompatible ML API output at run time.
To tackle mismatched ML API outputs, SmartGear leverages the insight that ML API outputs

which lead the execution towards non-fall-through branch edges are de�nitely the ones that
software expects and knows how to handle, like any obj.name leading the program to execute
predict_flood_depth in Figure 1. We refer to these API-output values as focal values. On the other
hand, if an API output leads the execution to a fall-through edge, it either is truly not interesting to
the software, like a label “Tree” in the �ood-detection application, or presents a mismatch with the
software, like a label “Vehicle” in the �ood-detection application.

To carry out this insight, SmartGear �rst uses symbolic execution to automatically �gure out the
sets of focal values. Then, at run time, for any API output > that is driving the execution towards a
fall-through edge, SmartGear uses a knowledge graph [Wikidata 2022] to compare > with those
focal values. Based on the knowledge graph, SmartGear knows whether > is a synonym with some
of the focal values, whether > is looking at a di�erent perspective from all the focal values, etc.
SmartGear then reports mismatch and conducts output conversion accordingly.
To tackle incorrect ML API outputs, SmartGear leverages an insight about output consistency:

the outputs of one ML API upon several similar inputs should be consistent with each other (e.g.,
object detection results for the two images in Figure 2 should be consistent); the outputs of several
related ML APIs upon one input should also be consistent (e.g., if a facial expression API reports a
happy face; the object detection API should be able to identify a human face from the same image).

To carry out this insight, SmartGear e�ciently compares the outputs of related API invocations
at run time and detects inconsistent API outputs. SmartGear resolves such inconsistency and hence
reduces potential integration failures by applying ensemble techniques [Dietterich 2000] on these
invocations. Furthermore, for ML APIs that produce free-text outputs, SmartGear also checks the
consistency between the output > and the focal values. When > only has a minor di�erence, like

2Some applications directly display the output of an ML API. This trivial use of ML APIs is not the target of SmartGear.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:5

one character di�erence, from a focal value, SmartGear regards > as incorrect and converts it to the
corresponding focal value.

We evaluate SmartGear using the latest version of 65 open-source Python applications that cover
di�erent problem domains and ML APIs. In our evaluation, SmartGear successfully detects 70% of
the integration failures and correctly converts 67% of incompatible ML API outputs, improving the
correct execution rate of these applications from 84% to 95%.
Our goal in designing SmartGear is not completeness, as catching all failures related to ML

techniques is inherently hard. Instead, we o�er a �rst systematic and best-e�ort attempt to reduce
failures caused by ML API integration problems, aligning the software expectation and ML API
behavior.

2 BACKGROUND

2.1 ML Cloud Service

ML cloud API. Many cloud service providers [Amazon 2022a; Google 2022a; IBM 2022; Microsoft
2022a] o�er ML APIs for vision, natural language, and speech tasks. These tasks cover four cat-
egories: (1) classi�cation, which outputs a category that describes an input based on its overall
content; (2) recognition, which identi�es object/entity/text from an input; (3) synthesis, which
generates data from descriptions, e.g., speech synthesis; and (4) translation.
Among these four categories of APIs, classi�cation and recognition APIs are used the most

often, contributing to almost 90% of Google and AWS ML API usage in GitHub [Wan et al. 2021].
Consequently, in this paper, SmartGear focuses on all 10 classi�cation and recognition APIs o�ered
by Google, which covers all three domains (vision, language, speech). SmartGear could also be
extended to support synthesis and translation tasks, which we leave as future work.

ML API input & output. The input of an ML API typically is an image/video/article/audio together
with several con�guration parameters. For example, speech APIs require developers to specify the
encoding type, sample rate, and language of the input audio. The output of an ML API is usually an
array of records, with each record containing several �elds that describe an element of the input
data and a con�dence score. For example, an object detection API outputs a record of object type,
bounding box, and a con�dence score for each recognized object in the image. To reduce run-time
overhead, SmartGear only examines the record �elds that are later used by the software.

2.2 Knowledge Graph

A knowledge graph is a database that uses a graph-structured data model to store the description
of real-world entities and the relationship between them. Knowledge graphs are widely used for
knowledge reasoning in various scenarios, including question-answering systems, search engines,
and recommendation systems [Chen et al. 2020a]. Each node in a knowledge graph is called an
entity, which could be an object, a person, an organization, a location, etc. Typically, each node
contains an identi�er, a description, a label for the most common name of the item and several
aliases. For example, “car” is alias to “motor car”, in Wikidata knowledge base [Wikidata 2022].
Each directed edge between two entities is a statement that describes the relationship between two
entities or the property of the starting node. For example, an “subclass-of” edge connecting node
“van” to node “vehicle” indicates that van is one of the sub-categories of vehicle.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:6 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Table 1. Number of applications using di�erent ML Cloud APIs in our benchmark suite

Task ML Cloud API # Apps

Vision

Classi�cation
label_detection 14
web_detection 2
landmark_detection 1

Recognition
object_localization 10
face_detection 3
text_detection 8

Language
Classi�cation classify_text 10

Recognition
analyze_entities 6
analyze_entity_sentiment 1

Speech Recognition recognize3 9

3 UNDERSTANDING INTEGRATION FAILURES

3.1 Methodology

3.1.1 Applications. We study 55 Python applications where ML API outputs are used to a�ect
control �ow. We focus on this type of applications, as they re�ect a non-trivial way of using
ML APIs, instead of directly outputting API results. Among these 55 applications, 45 are all the
applications in a recently published, real-world ML software benchmark suite [Wan et al. 2022] that
use classi�cation and recognition APIs to make control �ow decisions. As language classi�cation
and speech recognition APIs are the least represented in these 45 applications, we additionally
identify 10 more applications on GitHub that use either of these two types of APIs to achieve a
more balanced suite of applications.
As shown in Table 1, these applications cover a wide range of machine learning tasks. Their

median size is 20,000 lines of code, and 23 of them have received star/fork/watch from GitHub.
For each application, we conduct unit testing upon the entry function that contains the branch

whose outcome is directly a�ected by ML API. For the 6 out of 55 applications that invoke multiple
ML API calls, we use these API calls’ closest common caller function in the call graph for testing.

3.1.2 Test Data. For each target function to test, we design 100 test inputs to o�er roughly even
coverage for all paths in the function that invoke an ML API. When there are loops, we consider
paths that execute zero or one loop iteration.

To obtain realistic video/image/text inputs for ML APIs, we leverage search engines, Bing search
for images/texts and YouTube for videos. For each application, we carefully crafted search keywords
that describe the type of inputs related to a path. For example, we feed keywords like “car”, “van”,
and “truck” into Bing image-search to get inputs that execute line 6 in Figure 1. We manually check
the top search results and use the ones that we believe are relevant to the software under test. For
inputs that potentially contain human identi�cation information, e.g. human faces and vehicle
license numbers, we search in public benchmark suites [Kuehne et al. 2011; Panetta et al. 2021]
to ensure ethical standards. For audio-processing APIs, since there lacks an audio search engine
for real-word audio clips, we designed 45 transcripts based on application scenarios and branch
conditions, each containing 1 or 2 English sentences. Seven male and three female participants
from authors’ institution volunteered to record their speech audios, in their regular way interacting
with voice-controlled applications. Participants are between 18 and 30 years old, including both
native and non-native English speakers. All tests are independently veri�ed by the two authors.

3It includes the synchronous, asynchronous and streaming versions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:7

Fig. 4. Testing results for 55 applications.

3.1.3 Failure Identification. We examine each function and decide the correct function behavior
for each test input. In two applications, the tested function invokes external library APIs, e.g., �ood
depth prediction and calorie estimation, which is out of the scope of unit testing. Therefore, we
examine whether the parameters of these API calls are correct. Every test case and test oracle is
cross-checked by at least two authors.

3.2 Testing Result Summary

Among all the 5500 unit tests (= 100 tests per app ×55 apps), 860 unit tests failed, with an average
failure rate of 15.6% and a median failure rate of 8%. The failure rates are similar across applications
that use di�erent types of ML APIs (i.e., vision, language, and speech), as shown in Figure 4.
Among these test failures, 99% of them occur in tests that exercise a non-fall-through edge of

a branch whose outcome is determined by ML API outputs, like the true edge of the branch on
Line 5 of Figure 1. This phenomenon re�ects that fall-through edges are much less sensitive to
mismatched or incorrect ML API outputs.

At the �rst glance, one might blame the cloud ML-service provider for high failure rate. However,
as shown in Figure 4, for both vision applications and language applications, the majority of testing
failures are actually not caused by incorrect API outputs. In total, as many as 566 test failures are
caused by ML API outputs that are correct but do not match with the software’s need.
Among these 860 failures, 4 of them caused the software to crash, and yet the remaining 856

caused silent failures with incorrect software behaviors and yet no exceptions thrown. These silent
failures are di�cult to automatically detect and are the focus of this paper.
Finally, among all the 55 applications, only 13 applications have not encountered any testing

failures, including 5 vision, 6 language, and 2 speech applications. These applications either tolerate
mismatched ML API outputs (e.g., some applications created a lookup table for all possible ML API
outputs), have a lower accuracy requirement of ML APIs (e.g., some applications simply segment
audio inputs by pauses while neglecting the exact transcript), or perform a highly accurate cognition
task (e.g. �nding nouns in a biography).

3.3 Root Cause 1: Mismatch between ML API and So�ware

About 65% of failures in our unit testing are caused by correct ML API outputs that are mismatched
with the software, just like the mismatched vehicle-label example in Figure 2. As shown in Figure
4, these mismatched ML API outputs are common in both vision applications and language applica-
tions, but not in speech applications—speech recognition API could produce incorrect output but
not mismatched output, as it outputs audio transcript in free text instead of categorical labels.
Our further study reveals three main types of mismatch.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:8 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

1 image = types.Image(content=room_photo)

2 response = client.label_detection(image=image)

3 predict = response.label_annotations [0]. description

4 category = ""

5 if predict in ["Light", "Wall plug", "Lighting accessory", "Electrical wiring"]:

6 category = "Electrical"

7 if predict in ["Toilet", "Plumbing", "Sink", "Bathroom", "Washing machine"]:

8 category = "Plumbing"

9 if predict in ["Wall", "Door", "Handle", "Lock"]:

10 category = "locksmith"

11 return category

Fig. 5. RoomR, a property management application [RoomR 2020].

Perspective:
Material

ML API
Output

Software
Input

Software
Expectation

Light
Roof

lantern

Wall socketPlastic

PlumbingHand

subclass of Light

Perspective:
Equipment

≠

≠

≠Hierarchy

Mismatch

Perspective

Mismatch

Focus

Mismatch

(a)

(b)

(c)

Fig. 6. Three types of mismatch in RoomR (Figure 5).

3.3.1 Hierarchy Mismatch. This is the most common type of mismatch, contributing to about
one-third of all unit testing failures. Real-world entities have hierarchical relationships, e.g., one is a
subclass/component of the other. One object can often be correctly described by multiple labels at
di�erent levels of hierarchy. However, a software application may only be coded to recognize one
of these labels, causing this hierarchy mismatch. The vehicle problem in Figure 1 is an example.
As another example, the property management application RoomR [RoomR 2020] (Figure 5)

uses label_detection to classify an indoor photo and extracts the description �eld of the �rst
API output record. If this �eld is contained in one of the four pre-de�ned lists, RoomR maps the
photo to the corresponding category. As shown in Figure 6, the ML API outputs “Roof lantern”
for a ceiling light photo, which is a correct output for image classi�cation. However, the software
misbehaves, failing to put this photo into the “electrical” category. The reason is that the software is
coded to recognize “Light” as “electrical”, but not its subclass “Roof lantern”, as shown in Figure 5.

Besides subclass relationships, hierarchy mismatch also includes the alias relationship. Naturally,
people might use di�erent phrases to refer to the same entity. For example, “Light” is under the
alias “Light source” and “Light emitter”. When the software only examines the alias of an ML API
output, it will misbehave even when ML API successfully recognized the corresponding entity.
Hierarchy mismatch is common for two reasons. First, ML cloud APIs typically have a large

number of categories for classi�cation and recognition tasks, e.g., Google Vision AI has 20,000
category labels with a hierarchical structure. It is hard for developers to exhaustively go through the
label set and specify all the related ones. Therefore, ML APIs are very likely to return a mismatched

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:9

Software
Input

Castle

Software
Expectation

ML API
Output

Sky

Grass

Tree, Plant

Cloud

Fig. 8. Focus mismatch in a smart album application [Aander-ETL 2017].

label to the software during run-time. Second, the hierarchy of API outputs is greatly a�ected by its
input. In general, the more objects the input includes and the harder the identi�cation is, the more
likely the ML API is to output superclass labels to ensure correctness [Wehrmann et al. 2018].

Fig. 7. A photo inducing perspec-

tive mismatch in a trash classifi-

cation app [SmartCan 2019].

3.3.2 Perspective Mismatch. Given an object, an ML API could
output multiple correct labels that describe the object from dif-
ferent perspectives, like shape, texture, color, etc. This typically
happens in multi-label classi�cation [Grandini et al. 2020] APIs
with a large label set, such as Google’s label_detection and Ama-
zon’s DetectLabels APIs. Perspective mismatches contribute to
around 3% of all unit testing failures in our study.

In the example of Figure 6, the software only examines the equip-
ment type and expects ML API to describe the photo in the same
way. However, when given a wall socket photo, the ML API outputs
a label describing it by its material (“Plastic”), which is correct but
does not match the perspective of the software. As another exam-
ple, a trash classi�cation application [SmartCan 2019] examines
the material of input images. However, when given a photo of a glass ornament (Figure 7), the ML
API outputs labels that describe the object in the photo from the perspectives of geometric shape
(“Triangle”) and color (“Purple”), which are totally di�erent from the perspective of the software.

3.3.3 Focus Mismatch. Sometimes, the software application cares about a particular object in
the input image or video, and yet the ML API outputs are about other objects in the input. This
contributes to around a quarter of all unit testing failures in our study.

Focus mismatch typically happens to an input that contains many di�erent elements or objects,
and the one the software cares about is unfortunately not considered a signi�cant piece of informa-
tion in the input. The labels of these less dominant elements have a lower rank and thus are ignored
by the ML API. In Figure 6, the ML API recognizes hands in the shower faucet photo, as it occupies
a large area in the image. Unfortunately, the software expects the API to output “Plumbing” for the
shower control valve. As another example, a smart album application [Aander-ETL 2017] wants
to �nd buildings and is given an image of a castle in the countryside, but the castle takes up a
relatively small portion of the image (Figure 8). A focus mismatch occurs when the top labels from
the ML API are sky, tree, and grass, instead of the castle.

Summary. Mismatched ML API outputs bring new challenges to the reliability of ML applica-
tions, as they cannot be eliminated by only inspecting and improving the accuracy of ML APIs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:10 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Software Input ML API Output

Frame 1

Frame 2

Frame 3

Thebiscuit2 knocked out
LilBandit94 with a shotqun

Thebiscuit2 knocked out
LilBandit94 with a shotgun

Thebiscuit2 knocked out
LilBandlt94 with a shotgun

Software Correctness

Wrong weapon.

Correct.

Wrong victim.

Fig. 9. Failures in a real-time game tracker for Fortnite Ba�le Royal [FortniteTracker 2019].

1 audio = RecognitionAudio(content=audio_content)

2 result = client.recognize(config , audio)[0]

3 script = result.alternative [0]. transcript

4 if "go to sleep" in script:

5 sleep_mode ()

6 elif "play the song" in script:

7 play_song ()

8 elif "what is the weather today" in script:

9 report_weather ()

Fig. 10. Lisa-Assistant [Lisa-Assistant 2021], a voice assistant application.

3.4 Root Cause 2: Incorrectness of ML API Output

ML APIs adopt statistical models without strict correctness guarantees. Therefore, from time to
time, ML APIs produce incorrect outputs, which lead to about one-third of all the test failures. In
the studied applications, incorrect ML API outputs mainly come from two sources.

3.4.1 Neural Network Vulnerability. Due to the probabilistic nature of neural networks, a small
perturbation of input might trigger inner �aws of neural network models and leads to an incorrect
answer [Szegedy et al. 2014]. This type of incorrectness is likely to be eliminated with a slightly
di�erent software input. As shown in Figure 2, while the two video frames have hardly perceptible
di�erences, the object_detection API recognizes di�erent numbers of vehicles in them.
As another example, a real-time game tracker [FortniteTracker 2019] uses text_detection to

extract status logs from screenshots. It then identi�es the murderer, means, weapon, and victim
from each log line. Figure 9 shows the logging area of three adjacent frames from a game video,
which share the same text string at the same position. However, due to minor background changes,
the API recognizes di�erent text from them, leading the software to make di�erent decisions.

3.4.2 Low Input �ality. Sometimes, the software input does not contain enough information for
ML APIs to perform its cognition task, e.g., a blurry photo or a noisy audio clip. It typically leads to
a slightly di�erent output from the ground-truth. Figure 10 illustrates a voice assistant application.
It records the user’s voice command and uses the recognize API to transcribe speech into text
strings. It is supposed to play music when the user says “play the song.” However, the ML API often
wrongly recognizes “play song”, missing “the”, from audio clips with a high speaking rate. This
small mistake causes the software to misbehave, not playing music when it should.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:11

response = client.object_localization(image=photo)

Original Python Code

LOAD_FAST client

LOAD_ATTR object_localization

LOAD_FAST photo

LOAD_CONST ('image',)

CALL_FUNCTION_KW 1

STORE_FAST response

Original Instructions Inserted Instructions

STORE_FAST original_output

LOAD_METHOD detect_and_convert

LOAD_FAST original_output

CALL_FUNCTION 1

STORE_FAST converted_output

LOAD_FAST converted_output

response = detect_and_convert(

client.object_localization(image=photo))

Equivalent Python Code

Fig. 11. SmartGear conducts compatibility checking and fixing through byte-code level instrumentation.

Table 2. SmartGear’s strategies for detecting and preventing integration failures

Root Cause Detection Conversion

Mismatch between
ML API and software

Cross checking ML API output
and software focal values

ML API output clustering;
API input segmentation

Incorrectness of
ML API output

Validation across inputs Ensemble; Video API
Validation across APIs Ensemble
Validation across API and SW ML API output clustering

Summary. While much prior work focuses on improving neural network accuracy, our study
shows that software provides additional information to tackle the incorrectness of ML API. Some-
times, an ML API is invoked on similar inputs, like a series of screenshots, where an incorrect
output can be detected by checking output consistency across inputs like the example in Figure 9.
Sometimes, the API output is incorrect but very similar to a focal value in the software (e.g., “play
song” versus “play the song”), which could have been handled and mitigated. In section 6, we will
attempt to tackle incorrect ML API outputs by utilizing such software information.

4 OVERVIEW OF SMARTGEAR

SmartGear is a runtime tool that transparently and automatically checks and converts the output
of ML API calls, preventing ML API integration failures.
To use SmartGear, application developers apply a static code instrumentation routine to their

applications, which inserts a SmartGear method after every ML API invocation, as shown in Figure
11. At run time, for every ML API output, which is typically an array of values, SmartGear applies a
series of incompatibility checking, starting from mismatch checking and followed by incorrectness
checking, as listed in Table 2. For every output value > that SmartGear considers to be incompatible,
SmartGear generates a warning message and attempts to convert > . Di�erent conversion strategies
are designed for di�erent incompatibility situations, as listed in Table 2. When more than one
conversion strategy is designed for an incompatibility situation, SmartGear attempts the strategy
that incurs the least overhead �rst. Whenever SmartGear �gures out a way to convert an output
value > to > ′, the new value > ′ is inserted to the original output array, as illustrated in Figure 11.

In the next two sections, we will explain how SmartGear detects and converts mismatched
(Section 5) and incorrect ML API output (Section 6).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:12 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

5 TACKLING MISMATCHED ML API OUTPUTS

At a high level, SmartGear tackles the mismatch between ML API output and software by examining
the cognitive relationship between API output and software focal values. It includes several steps.
First, for each invocation � of an ML API, SmartGear conducts static analysis to obtain sets of

outputs of this API, with each set driving the execution to cover some non-fall-through branch
edge(s) after � . As discussed earlier, these are referred to as focal values and they represent API
outputs that the software is interested in and knows how to handle.
Next, at run time, right after the execution of � , SmartGear compares the API output produced

there, which is typically an array of values, with focal values associated with � . If at least one of the
output values is a focal value, SmartGear assumes that the output is compatible with the software
and the execution moves on. Otherwise, SmartGear launches its incompatibility detection.
SmartGear’s incompatibility detection checks if there exists hierarchy, perspective, or focus

mismatch one by one, guided by the study in Section 3.3. Also guided by the above study, SmartGear’s
checking is centered on using a knowledge graph to understand cognitive relationships between API
output and focal values: Is one the superclass or alias of the other? Is one from a di�erent perspective
from the other? Is one related to the other even though there is no superclass relationship?
Once a mismatch is detected, a conversion attempt follows.
In the remainder of this section, we �rst present how we use static analysis to identify focal

values, and then discuss how each type of mismatch is checked in detail.

5.1 Obtaining Focal Values

What are focal values? In many cases, the output of an ML API a�ects control �ow in a straight-
forward way. For example, in the Flood-Depths code snippet shown in Figure 1, ML API output
is used to decide the outcome of the �ood-depth prediction branch on Line 5. In this example,
output values {Car, Van, Truck, Boat, Toy vehicle} form a set of focal values, driving the execution
towards the non-fall-through edge of the branch.
In some applications, the output of an ML API a�ects the outcome of multiple branches B, like

that in Figure 5. In such a case, more than one set of focal values exists. Every set of focal values
drives the execution towards a unique combination of outcomes of B, with at least one branch �,
� ∈ B, taking a non-fall-through edge. We will refer to the unique branch outcome combination
associated with each set of focal values as a focal path. For example, in the RoomR example, there
are three unique sets of focal values, covering three di�erent focal paths.

Finally, very rarely, the software might perform an operation under a branch condition that the
ML API output values should not contain or not equal to certain values V. Strictly speaking, this is
not a fall-through edge. However, SmartGear still treats it as a fall-through and treats the small
set of values the branch condition compares with V as focal values. The rationale is that the small
number of values that software explicitly speci�es are the ones that software knows how to handle.

How to identify focal values? To compute a set of focal values for each combination of branch
edges a�ected by ML API, SmartGear adopts a dynamic symbolic execution approach [Irlbeck et al.
2015]. It treats ML API output values as symbolic variables. SmartGear ignores the branches that
are unrelated to ML APIs and reconstructs the remaining ones in the format of sub-conditions
concatenated with logical OR operators (e.g., Car or Van or Truck or Boat or Toy vehicle

in Figure 1). SmartGear then generates constraints for all combinations of these sub-conditions of
its branch conditions and uses a standard constraint solver to �nd all the satisfying values of the
ML API output, which are the focal values.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:13

5.2 Understanding Cognitive Relationship

We use knowledge graph to understand the cognitive relationship between two cognitive descrip-
tions. Particularly, we want to understand four relationships: subclass/superclass, alias, same/dif-
ferent perspective, and correlation.
For vision tasks, SmartGear leverages a public knowledge graph database Wikidata [Wikidata

2022] to understand the hierarchy, perspective, and other relationships between ML API outputs
and software focal values. It is a directed graph, where each node represents a real-world entity,
and edges are notated with statements of the relationship between entities. Wikidata supports
thousands of statement types and contains over 95 million entities [Haller et al. 2022], covering
all the vision categories of popular ML cloud services [Amazon 2022b; Kuznetsova et al. 2020;
Microsoft 2022b]. We use this Wikidata knowledge graph in the following ways:

• Sub/super-class: SmartGear traverses the subclass-of edges between knowledge graph entities.
Two descriptions, like “vehicle” and “car”, have a sub/super-class relationship only when one
is reachable from the other through subclass-of edges.

• Alias: SmartGear detects alias relationships by querying the knowledge graph to examine
whether two descriptions belong to the same entity.

• Same/di�erent perspective: SmartGear treats knowledge graph entities directly connected
to the node “entity” or “object” as perspectives, which are typically abstract concepts, e.g.
phenomenons, scienti�c objects, and natural objects. It recursively accesses the superclass of
a description, until it reaches these perspectives. If the perspectives of two descriptions have
intersection, it regards them as sharing the same perspective.

• Correlation: SmartGear regards two descriptions as having a strong correlation only when
their corresponding entities’ distance in the knowledge graph is smaller than 2. For example, a
“door” is correlated with a “building”, as the latter has a “has part(s)” edge directly connecting
with the former.

Note that, since the Wikidata knowledge graph contains more than 100 GB of data, the current
prototype of SmartGear accesses this online graph database through Wikidata API and caches
recently returned API results locally, instead of downloading the whole graph to the local machine.

For language tasks, SmartGear leverages built-in text class hierarchy from cloud service providers,
which typically is a directed tree. For example, Google Natural Language AI [Google 2022b] has
620 topic categories in a four-level tree hierarchy, specifying all the superclasses of each category.
We uses this text class hierarchy in the following ways:

• Sub/super-class: SmartGear directly uses this class hierarchy graph to determine it.
• Alias: Text topic classi�cation task does not contain aliases.
• Same/di�erent perspective: All the categories have the same perspective of the topic.
• Correlation: SmartGear regards two categories as correlated if they share the same non-root
parent node in the class hierarchy, e.g., “investing” and “insurance” are correlated as both of
them are the subclasses of “�nance”.

5.3 Tackling Hierarchy Mismatch

Among the three types of mismatch, a hierarchy-mismatched API output has the closest cognitive
relationship to software focal values, as it indicates that the ML API probably detects the object/-
concept software is looking for, but outputs a di�erent label in the right class hierarchy. Therefore,
SmartGear examines whether there exists a hierarchy mismatch �rst.
Using the knowledge graph, SmartGear examines if any focal value has a sub/super-class rela-

tionship with any value generated by the API: If there is none, SmartGear considers there is no
hierarchy mismatch and moves on to detect other potential mismatches.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:14 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Original API Output:
Cabinetry, Furniture

Segment

Input

Merge

Output

Sink, Cabinetry, Furniture,
Property, Wood, Cabinetry,

Basket , Kitchen

Property, Wood Wood, Basket

Cabinetry, Sink Cabinetry, Kitchen

Fig. 12. Tackling heirachy mismatch with segmentation in RoomR (Figure 6).

If the API output has a sub/super-class relationship with exactly one set of focal values, SmartGear
regards that there is a hierarchy mismatch. SmartGear then takes one such focal value and inserts
it into the API output to �nish the �xing attempt.
Finally, if the API output has sub/super-class relationship with multiple sets of focal values,

SmartGear segments the input of the ML API into several pieces, 4 pieces by default, and then
applies the ML API again. For example, for an image input, we segment it into 2×2 smaller images;
for a text input, we segment it into 4 text pieces with roughly equal length without breaking
sentences; and so on. The rationale is that by reducing the number of elements/objects in each
input, the ML API is more likely to produce more concrete descriptions, which will help to pin down
the exact focal-value set and hence the control �ow the software should follow. After obtaining the
ML API output for the new set of inputs, If the new output converges to one set of focal values,
SmartGear con�rms the hierarchy mismatch, adds such a focal value into the original API output,
and �nishes the incompatibility checking. Otherwise, SmartGear considers there to be no output
mismatch and moves on to check the correctness of the API output.
Take RoomR in Figure 5 as an example. Given the ceiling light image in Figure 6a, the label_

detection API produces a set of labels, including “Roof lantern”, “Fixture”, “Wood”, “Line”, and
others. SmartGear observes that none of these values are focal values and the execution is heading
towards the fall-through edges of all three branches in Figure 5. Therefore, SmartGear starts its
hierarchy mismatch checking and �nds that among the three sets of focal values, exactly one set
(“Light”, “Well plug”, “Lighting accessory”, “Electrical wiring”) contains a label “Light” that has
a sub-super/class relationship with “Roof lantern”. Therefore, SmartGear adds “Light” into the
response array at Line 2 of Figure 5. An integration failure got avoided.

However, as shown in Figure 12, when the ML API outputs “furniture” initially, SmartGear would
not immediately know how to convert this output, as “Furniture” is a super-class of both “Light” and
“Sink”, which belong to two di�erent focal value sets, electronic set for the former and plumbing
set for the latter. In that case, SmartGear would segment the photo into 4 pieces and try again.

Note that, there is a special case of hierarchy mismatch caused by alias. For example, the software
might have a focal value “Motor car”, but the ML API may output its alias “Car”. Once discovering
an alias relationship, SmartGear converts the API output to the corresponding focal value.

5.4 Tackling Perspective Mismatch

If no hierarchy mismatch is reported, SmartGear next examines whether the ML API out describes
the input in the same perspective as the software. When there is no intersection between the
perspectives of all software focal values and ML API output values, SmartGear reports a perspective
mismatch. Whether two values follow the same perspective is judged using the knowledge graph,
as discussed in Section 5.2.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:15

Original API Output:
Building, Floor

Segment

Input

Merge

Output

Door, Building, Floor,
Window, Lamp, Wood,

Ceiling, Fixture

Window, Lamp Wood, Ceiling

Floor, Door Fixture, Door

Fig. 13. Tackling focus mismatch with segmentation in RoomR (Figure 6).

Di�erent from hierarchy mismatch, SmartGear only reports a warning instead of attempting to
convert the API output. A perspective mismatch indicates that the ML model behind ML API is
not trained to recognize the speci�c perspective, which the software cares about, for this speci�c
input. Any manipulation of the ML API inputs or outputs cannot enlarge the description spectrum
to include more description perspectives. For example, the perspectives of all the focal values in
RoomR are about equipment. When an ML API output only uses “Plastic” (material perspective) to
describe a wall socket image (Figure 6), SmartGear reports a perspective mismatch warning.

5.5 Tackling Focus Mismatch

When ML API outputs do not have hierarchy or perspective mismatch, SmartGear then investigates
whether ML API and software might have focused on di�erent items in the same input.

Focus mismatch is very di�cult to detect. For example, in RoomR, when ML API outputs “Hand”
while the software is looking for “Plumbing”, there are three possible reasons: (1) the image contains
both a hand and a plumbing equipment, but the ML API wrongly focuses on the hand; (2) the
image only contains a hand, and the ML API’s output is correct; or (3) the image does not contain a
hand, and the ML API makes a completely wrong prediction. While the last case is rare due to the
statistically high accuracy of ML APIs, it is hard to distinguish between the �rst two.
SmartGear examines a focus mismatch in three steps. It �rst con�rms there is no hierarchy or

perspective mismatch. It then examines whether the ML API results and some of the focal values
have correlations and hence are likely to appear together in the same scene in real life. If that is the
case, SmartGear �nally applies a segment-and-ensemble strategy to check if the correlated focal
value actually exists in the software input.

The way that SmartGear conducts segment-and-ensemble is similar to that in perspective
mismatch checking: the input is segmented into 4 pieces with roughly the same size, the ML API is
applied to each of the 4 segments, the 4 sets of output is aggregated to form the new output for
SmartGear to re-check. If the new output contains a focal value, SmartGear judges the original
output to contain a focus mismatch. Otherwise, SmartGear considers the API output to contain no
mismatch with the software and moves on to incorrectness checking, described in the next section.

The rationale behind this strategy is that, as discussed in Section 3.3, focus mismatch is caused by
the characteristic of software input that the element software cares about is overwhelmed by others.
Therefore, after the segmentation, with fewer elements in each API invocation, the ML API may
be able to recognize those previously overwhelmed objects in the input. Of course, segment-and-
ensemble is relatively expensive, requiring several extra ML API invocations. Therefore, SmartGear
carries it out only after several steps of �ltering, as discussed above.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:16 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Figure 13 shows how SmartGear resolves focus mismatch in RoomR.While the software examines
the existence of “Door”, the initial output of the ML API only contains “Building” and “Floor” for the
door image. SmartGear regards it as a potential focus mismatch, as “Door” and “Building” have a
strong correlation, according to the knowledge graph Therefore, SmartGear invokes the API on the
four segments of the input image. The new result does contain “Door”. Consequently, SmartGear
inserts “Door” into the API output, and eliminates the focus mismatch.

5.6 Limitations and Discussions

When SmartGear converts an API output > to a focal value > ′ that is a subclass of > , this decision
could be wrong in theory. For example, if an object-detection API returns “Food” and SmartGear
converts “Food” to the focal value “Apple”, this decision might be wrong if the input image actually
contains an orange instead of an apple. However, in practice, this situation rarely occurs. The
reason is that when “Apple” is a focal value, “Orange” is often also a focal value—either “Orange” is
in a di�erent focal-value set, where the software is trying to di�erentiate between di�erent fruits;
or “Orange” is in the same focal-value set as “Apple”, where the software is trying to di�erentiate
fruit from other types of objects. In the former case, “Fruit” would match with multiple sets of
focal values, which would cause SmartGear to apply segment-and-ensemble strategy, instead of
randomly converting “Fruit” to one set. In the latter case, converting “Fruit” to either “Apple” or
“Orange” makes no di�erence. We will experimentally evaluate this in Section 8.

SmartGear might make a wrong judgment of perspective mismatch, when the software input is
completely unrelated to the software and thus could not be described in the same perspective.
Finally, techniques discussed in this section apply to ML APIs that produce categorical output,

which covers all the classi�cation and some of the recognition APIs, like object detection, o�ered
by ML service providers like Google, Amazon, and Microsoft. Techniques in this section do not
apply to ML APIs that produce free-text output, while techniques in the next section do apply.

6 TACKLING INCORRECT ML API OUTPUTS

As discussed in Section 1, it is di�cult to automatically judge whether the output of an ML API is
correct. SmartGear tackles this challenge by leveraging information beyond a single API invocation
� : (1) invocations of other APIs on the same input before � in the same run; (2) invocations of the
same API on similar inputs before � in the same run; and (3) software focal values. Of course, the
�rst two pieces of information may not exist at every ML API invocation.

6.1 Validation across APIs

Cloud services provide a wide spectrum of ML APIs, and many of them have functional overlaps.
Speci�cally, Table 3 shows the 7 groups of APIs with functional overlaps that we have identi�ed
based on the o�cial Google API documentation. SmartGear leverages this functional overlap to
detect incorrect API output.
To conduct this detection, SmartGear maintains a global history queue that records the input

and output of each ML API invocation. After the invocation � of each ML API �, SmartGear checks
the history queue to see if any ML API with functional overlap with � has been invoked in the past
upon the same input4. When such an invocation � ′ is identi�ed, SmartGear checks if the output of
� is consistent with that of � ′. Speci�cally, using the focal value information, SmartGear checks
whether the execution control �ow would change if the output of � is replaced with that of � ′. When
an inconsistency is detected, SmartGear tries to identify which one is incorrect, which we elaborate
on in the remaining part of this sub-section. If the output of the latest invocation � is incorrect,

4In practice, this occurs quite often, applying to 5 out of 6 applications that use multiple APIs in our benchmark suite.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:17

Table 3. Google ML Cloud APIs with functional overlaps. (Bold ones are more specialized tasks.)

ML Cloud API Groups Functional Overlaps
label_detection, object_localization Object in image
label_detection, object_detection, face_detection Human in image
label_detection, landmark_detection Landmark in image
web_detection, label_detection Image content
web_detection, logo_detection Logo in image
text_detection, document_text_detection Text in image
analyze_entities, analyze_entity_sentiment Proper nouns in article

Software Input
API Output

label_detection
API Output

face_detection

Purple

Gesture

Entertainment
Fashion design

Convert

Face

Purple

Gesture
Entertainment

Fashion design

API Output
label_detection

Fig. 14. Resolving inconsistency between APIs in a smart album application [FESMKMITL 2021].

SmartGear conducts output conversion. If the output of the previous invocation � ′ is incorrect,
unable to rollback the history, SmartGear only generates a warning.
SmartGear decides which API’s output is correct in two ways depending on the relationship

between these two APIs. Sometimes, one API conducts a more specialized task than the other API.
Consequently, SmartGear would trust the more specialized API. The reason is that the specialized
API typically has higher accuracy on the overlapped task [Yanai and Kawano 2015]. In Table 3, the
bold-font APIs are the more specialized ones in their corresponding groups. In other cases, if the
two APIs both conduct specialized tasks, SmartGear trusts the one that contains more focal values.
For example, a smart album application [SeeFarBeyond 2022] uses Google’s face_detection

API to �nd human faces in the image. It then invokes Google’s label_detection API to categorize
the same image, with the focal value “Face”. While the former is a more specialized API for
�nding humans in the image, the latter API is also able to classify human images. Therefore, when
face_detection API recognizes a face but label_detection does not contain this focal value,
SmartGear regards the latter as incorrect and adds “Faces” to its output array (Figure 14).

6.2 Validation across Inputs

As discussed in Section 3.4.1, a small change of the input sometimes triggers inner �aws of neural
network models and leads to an incorrect result, as shown in Figure 2 (frame 2) and Figure 9.
SmartGear detects an incorrect API output > if > is inconsistent with the outputs recently produced
by the same API upon similar inputs.

Speci�cally, for each ML API invocation site, SmartGear maintains a history queue that records
the last inputs and outputs processed and produced at this site (is con�gurable and set to 5 by
default). Upon every ML API invocation that produced an output > based on an input 8 , SmartGear
searches the corresponding history queue for any past input 8 ′ that is similar with 8 , and checks
whether the output of 8 ′, denoted as > ′, is consistent with > . We consider > and > ′ to be consistent,
if they are expected to in�uence software control �ow in the same way, which SmartGear judges
based on the focal value information. To minimize performance overhead, SmartGear uses light-
weighted algorithms to measure input similarity: perceptual hash values are used for image inputs

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:18 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Using

Image

API

Using

Video

API

Video Frames

Vehicle
Van Van

Car
Van

Car Car
VanVan

Car Car Car

Vehicle Vehicle

Fig. 15. Applying image and video APIs to the input of Flood-Depth (Figure 1).

and Levenshtein distance is used for text inputs. SmartGear does not measure audio similarity, as it
is very rare for an application to process two input audio clips that are similar to each other.
After detecting inconsistencies, SmartGear tries to convert the output of the latest invocation

based on the history. If the software takes images as input, SmartGear utilizes temporal information
by concatenating several recent images, including the latest one, into a video and using a video
API to get a more accurate result, which is then used to convert the original image API output.
For non-vision APIs, SmartGear uses the majority voting rule to �gure out a value to convert the
latest API output. As shown in Figure 15, SmartGear detects that the object_localization API
provides di�erent vehicle detection results across adjacent video frames. SmartGear then invokes
the corresponding video API, which �nds all the vehicles in the video, and forwards the last frame
result to the software as a correction of the most recent invocation of the original vision API.

6.3 Validating across So�ware and ML API

There is an additional chance to detect incorrect output for recognition tasks whose outputs are free
text, instead of pre-de�ned labels. Examples of these tasks include image-to-text, speech-to-text,
and others. These tasks typically adopt RNN or LSTM and perform a scanning strategy to recognize
text from images and audio [Messina and Louradour 2015; Shewalkar 2019]. Therefore, when they
make mistakes, these mistakes tend to be small and local, e.g. missing a character.
SmartGear checks whether any ML API result could become a software focal value with edits

(Levenshtein distance) less than a threshold portion (by default 30%) of the average length of the
shortest focal string of each execution path. If there is only one related path, SmartGear clusters
ML API results to it and converts its value to the corresponding focal string. In the Lisa-Assistant
example (Figure 10), SmartGear �nds that API output “play song” could become “play the song” by
editing one word, while having a much larger distance to other branches’ focal values (e.g., “what
is the weather today”). Therefore, it clusters API output to the song branch.

If there are multiple related paths, SmartGear reports a warning that the software is not able to
distinguish them. The voice-activated light application (Figure 16) is an example. It records the
user’s voice command and uses recognize API to transcribe speech into text strings. It will turn
on/o� the light with the command “light on”/“light o�”. Tested with an inarticulate audio, the ML
API wrongly recognizes “light on” as “nike on”. While SmartGear �nds that “right on” has the
smallest edit distance to the focal values of the turn-on branch, it also has a similar edit distance to
the turn-o� branch. In this case, SmartGear reports a warning without converting API outputs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:19

1 audio = RecognitionAudio(content=audio_content)

2 response = client.recognize(config , audio)

3 for result in response.results:

4 script = result.alternative [0]. transcript

5 if script =="light on" or script =="lights on":

6 turn_on_light ()

7 if script =="light off" or script =="lights off":

8 turn_off_light ()

Fig. 16. A voice-activated light application [ProjectSyn 2020].

6.4 Limitations and Discussions

SmartGear might raise false alarms when the software is sensitive to minor di�erences of ML API
outputs, e.g., the audio transcript must be in the singular form of a certain word. SmartGear also
assumes that ML API is reliable for most of the time. It cannot prevent failures if the machine
learning model has a low overall accuracy on software inputs. SmartGear is only able to convert
the output of the most recent ML API invocation. cannot rollback to convert it. Finally, when
SmartGear uses focal values to validate API output, it cannot handle output that already incorrectly
contains focal values.

7 IMPLEMENTATION

The SmartGear approach is general and to various ML Cloud services and programming languages.
In this paper, SmartGear is implemented for Python applications and Google Cloud AI [Google
2022a], which is the most popular language and ML Cloud services on GitHub [Wan et al. 2021].

SmartGear is implemented as a run-time library with Python function decorator interface [Smith
et al. 2022]. To use SmartGear, developers only need to specify the target function, without changing
the software implementation. SmartGear then uses Bytecode module [Stinner 2021] and compiler
infrastructure to insert detection and conversion instructions between ML API invocation and
output storage. SmartGear uses Pyan [Marby and Yonskai 2021] and Jedi [Halter 2022] library,
symbolic execution framework PyExZ3 [Irlbeck et al. 2015], and CVC constraint solver [Barrett et al.
2011] for static analysis. SmartGear uses Wikidata python interface [Minhee 2021] for querying
knowledge graphs and ImageHash library [Buchner 2022] for image perceptual hash.

8 EVALUATION

8.1 Methodology

8.1.1 Applications and Test Data. We evaluate SmartGear using 65 applications. These include two
sets: 1) all the 55 applications in our empirical study (Section 3.1.1) and 2) 10 additional applications
sampled after the empirical study and the design of SmartGear. To identify these 10 applications,
we used a GitHub API to crawl and obtain a list of 300 top-ranked GitHub applications that invoke
ML APIs. We then manually examined these 300 applications and �ltered out those that do not use
ML API output for control �ow decisions and those already in our benchmark suite. Finally, we
took the top 2 remaining applications for each of the �ve task types listed in Table 1. The two sets
of applications turn out to have the same average ages (i.e., 35 months old as of April 1st, 2023) and
similar sizes (8185 LoC for the 55 applications, and 9924 LoC for the additional 10 applications).
Section 8.2.4 compares the evaluation results of these two sets of applications.

We design a new set of 100 test cases for each application, following the same methodology used
in our empirical study (i.e., the test inputs used in our evaluation do not overlap with those used

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:20 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

in our empirical study in Section 3). This set of inputs led to 1026 failed tests encountered by 52
applications, including 4 fail-stop failures. Among the 1022 silent failures without exceptions thrown,
696 are caused by mismatched API outputs and 326 are caused by incorrect API outputs—roughly
the same breakdown as the previous set in Section 3.

8.1.2 Metrics. SmartGear has two usage scenarios. First, its capability of detecting incompatible ML
API outputs could be used to caution app-users and to guide application developers to implement
application-speci�c �xing solutions. Second, its capability of converting incompatible ML API
outputs can prevent integration failures at the run time.
Therefore, we evaluate both the detection and the prevention capability of SmartGear and

baselines. If a technique detects a fail-stop symptom or an incompatible ML API output that leads
to software misbehavior in a test, we refer to it as successfully detecting an error. If it eliminates
software misbehavior by converting API output, we refer to it as successfully preventing a failure.

8.1.3 Baselines. Since there is no prior work tackling ML API integration failures at run time, we
have designed 4 baseline techniques, as listed below. The �rst 3 only support error detection, and
the last one aims to not only detect but also �x incompatible ML API outputs. As we will see, these
baselines all su�er from severe false positive or false negative issues. They are designed only for
comparison purposes, instead of realistic deployment.
Crash-Only: It conducts error detection by capturing software crashes, unhandled exceptions,

and assertion failures. This baseline does not attempt to convert erroneous API output.
ML-API-Only: In addition to monitoring fail-stop failure symptoms, it also uses the con�dence

score of ML cloud APIs to detect incorrect ML API outputs. In each execution, it reports an error if
the minimum con�dence score of an ML API output is lower than a certain threshold. To understand
the full potential of this baseline technique, we exhaustively searched the threshold space between
60% to 100%, with an interval of 1%, and identi�ed 72% as the setting that o�ered the most accurate
results for our benchmark. This baseline does not attempt to convert erroneous API output.
Software-Only: In addition to monitoring fail-stop symptoms, it also examines the control �ow

of software. In each execution, it reports an error whenever the software executes a non-focal path.
This baseline does not attempt to convert erroneous API output.

Software-Segment: This baseline attempts not only error detection but also failure prevention.
For each ML API output > , this technique �rst applies Software-Only to see if > might be erroneous.
If so, this technique segments the API’s image/text/audio input into four equal-size pieces, applies
the ML API to each piece, and then aggregates the output from each piece to form a new output
>
′. If > ′ is di�erent from > , an API output error of the original software is reported and > will be

converted to > ′ to prevent potential failures.

8.2 Evaluation Results

For each application in our benchmark suite, we apply SmartGear and four baselines on its 100 test
cases. Table 4 shows the overall results.

8.2.1 Incompatible ML API Output Detection. As shown in Table 4, across 6500 testing runs,
SmartGear reports 744 errors, with 718 true positives (i.e., the corresponding API output is indeed
mismatching or incorrect) and only 26 false positives. The 718 true ML API output errors detected
by SmartGear constitute 70% of all the 1026 ML API output errors that occurred during the 6500
testing runs.
For the 308 incompatible ML API output missed by SmartGear, there are mainly two reasons.

First, about 60% of false negatives are focus mismatches, which are not only common but also
inherently di�cult to detect, as discussed in Section 5.5. Second, over a third of these false negatives

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:21

Table 4. Result summary across 6500 testing runs, 100 each across 65 apps. (True Positive: a correct detection,

where the reported API output is indeed incorrect or mis-matching; False Positive: an incorrect detection,

where the reported API output is correct and matching.)

Detection Prevention
True
Positives

False
Positives

Execution
Failures

Execution
Correctness Rate

No Tool - - 1026 84.2%
SmartGear 718 26 349 94.6%
Crash-Only 4 0 - -
ML-API-Only 154 162 - -
SW-Only 905 1050 - -
SW-Seg 140 0 890 86.3%

are incorrect API outputs, SmartGear fails to detect them as SmartGear assumes that ML API is
reliable for most of the time, a limitation discussed in Section 6.4.
Among the 26 false positives in SmartGear’s detection, all but one of them occur during the

mismatch detection (Section 5). Particularly, SmartGear incorrectly reported a number of perspec-
tive mismatches for inputs that are somewhat irrelevant to the software under test. For example, a
plant management application [Plant-Watcher 2018] checks if an image is about “Plant” (natural
object) or “Flowerpot” (production good). Given a somewhat irrelevant city sky-view picture, the
label_detection API correctly outputs “Building” (arti�cial entity) and “Urban design” (research
object), and the application correctly considers the picture as neither plant nor �owerpot. Unfor-
tunately, SmartGear wrongly reports a perspective mismatch, as there is no overlap between the
perspectives of ML API outputs and software focal values, which are shown in the parentheses.
In comparison, the other four schemes have much lower detection coverage (i.e., many more

false negatives) or much lower detection accuracy (i.e., many more false positives) or both.
In terms of detection coverage, Crash-Only,ML-API-Only, and SW-Seg only detect 4, 154, and 140

API errors respectively, less than a quarter of what SmartGear detects. Crash-Only naturally has
the least coverage, as it can only detect fail-stop symptoms. ML-API-only performs poorly because
the con�dence score of an ML API cannot be used to tell whether the API output is compatible
or not with the software context. In fact, our experiment shows that compatible ML API output
and incompatible output have similar con�dence score distributions: across all ML API invocations
in test cases, the con�dence scores of compatible (incompatible) output range from 54%(50%) to
96%(94%), with 80% (79%) being the median. SW-Seg also has many false negatives, because its
segment-and-aggregate technique is helpful for detecting focus-mismatch output but not other
types of incompatible output. Take the code snippet in Figure 5 and the image in Figure 6a as
an example. SmartGear successfully detects a hierarchy mismatch between “roof lantern” and
“light”. This error is missed by Crash-Only, as no crash or exception occurred; this is also missed by
ML-API-Only as this particular API invocation has a con�dence score of 75%, higher than the 72%
threshold; as the ML API does not output “light” on the segmented images, SW-Seg also fails.
In terms of detection accuracy, ML-API-Only and SW-Only report more than 5× and 40× false

positives than SmartGear. The inaccuracy of ML-API-Only is because con�dence scores are not
indicative of the incompatibility between an ML API output and the software context, as discussed
above. The inaccuracy of SW-Only is caused by its aggressive error-detection strategy: by reporting
an error whenever the software executes a non-focal path, SW-Only reports more false positives
than true errors (i.e., 1050 vs. 905 as shown in Table 4). Comparing with SmartGear, SW-Only

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:22 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Fig. 17. The number of original testing failures that can be fixed by di�erent SmartGear strategies.

reports 1.26× more true errors, but at the cost of 40× more false positives. Its detection strategy
also o�ers no hint for output conversion or failure prevention, unlike SmartGear.

8.2.2 Incompatible ML API Output Conversion. The ultimate goal of SmartGear is to improve
applications’ execution correctness rate. As shown in the last column of Table 4, SmartGear achieves
this goal by improving the average execution correctness rate across all 65 applications from 84.2%
to 94.6%. Speci�cally, for the 744 API outputs that SmartGear believes to be incompatible, it comes
up with �xing strategies for 726 of them. Since SmartGear’s detection incurs a small number
of false positives, 9 of these �xing attempts turn originally correct API outputs to be incorrect.
Fortunately, the remaining 717 �xing attempts target truly incompatible API outputs, and turn
originally incompatible API outputs to be correct and compatible in 686 cases. As a net result,
SmartGear reduces the number of failed testing runs from 1026 down to 349.
Figure 17 shows the e�ectiveness of each of SmartGear’s �xing strategies. SmartGear resolves

68% mismatch between ML API and software with clustering and segmentation. For incorrect
output, SmartGear resolves 67% of them with clustering, ensemble, and video APIs.

In comparison, Software-Segment, the other scheme that has failure prevention capability, is only
able to eliminate 126 of 1026 failures, improving execution correctness by only 2%.

8.2.3 Ablation Study. To understand the e�ect of each heuristic in SmartGear, we conduct an
ablation study shown in Table 5. In (A)-(F), we each remove one of the heuristics introduced in
Section 5&6.
(A) and (C) show that detecting and resolving hierarchy and focus mismatch contribute the

most to the result of SmartGear. In other words, the detection coverage and the failure-prevention
capability of SmartGear drop the most when we remove these two strategies. This re�ects the
fact that hierarchy mismatch and focus mismatch are the most common types of incompatible
API output, as discussed in Section 3.3. Furthermore, the result of (A) also re�ects the fact that
SmartGear is particularly e�ective in detecting hierarchy mismatch: 99% of hierarchy mismatch in
testing runs are correctly detected by SmartGear.

The result of (B) indicates that tackling perspective mismatch has the least impact on the overall
result of SmartGear. This small impact is due to two reasons. First, perspective mismatch is the
rarest type of incompatible API output, as also discussed in Section 3.3. In this experiment, it only
contributes to 23 unit test failures (out of the total 1026 unit test failures). Second, to avoid false
positives, SmartGear uses a conservative approach to reporting perspective mismatch. As a result,
SmartGear incurs no false positives in its detection of perspective mismatch but only manages to
detect 4 out of these 23 perspective mismatch errors. How to improve the detection coverage for
perspective mismatch without sacri�cing the detection accuracy is a research topic for future work.

The strategies behind (D)–(F) are used by SmartGear to detect and �x incorrect ML API output.
As displayed in (D)–(F), these three validating strategies all provide non-negligible contributions to
SmartGear, each detecting 37 to 100 incorrect API output and preventing 27 to 98 failures.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:23

Table 5. Ablation study of SmartGear over each heuristic (Total # of original test failures is 1026 (100%))

#(%) Detected Errors #(%) Prevented Failures
SmartGear 718 (70%) 686 (67%)
(A) Remove resolving hierarchy mismatch (Section 5.3) 389 (38%) 357 (35%)
(B) Remove resolving perspective mismatch (Section 5.4) 714 (70%) 686 (67%)
(C) Remove resolving focus mismatch (Section 5.5) 547 (53%) 544 (53%)
(D) Remove validating across APIs (Section 6.1) 681 (66%) 659 (64%)
(E) Remove validating across inputs (Section 6.2) 624 (61%) 596 (58%)
(F) Remove validating across API and SW (Section 6.3) 618 (60%) 588 (57%)

8.2.4 Sensitivity across Apps. SmartGear shows similar detection and prevention capability over two
application sets, the 55 applications used in our empirical study and the 10 additional applications.
Speci�cally, SmartGear detects 642 (70%) API output errors and prevents 623 (68%) out of 920 testing
failures in the original 55 applications; it detects 76 (71%) errors and prevents 63 (60%) out of 106
testing failures in the additional 10 applications. SmartGear improves the execution correctness rate
from 83% to 94% for those 55 applications; and from 89% to 96% for the additional 10 applications.

8.2.5 Performance Overhead. Due to computation workload and network transmission, ML API
invocations typically take half to several seconds [Wan et al. 2021], much longer than other
computations in integration failure prevention. Therefore, the run-time overhead is mainly caused
by extra ML API invocations, e.g., invocation upon segmented input (Section 5.3 & 5.5) and invoking
video API (Section 6.2). Note that, SmartGear uses one batch API, instead of four separate API
calls, to process the four segmented inputs to reduce overhead. Overall, across all 5500 test cases,
SmartGear introduces 6% performance overhead on average. When there is no extra ML API
invocation, the overhead of SmartGear is around 1%. In comparison, the Software-Segment baseline
invokes many more ML APIs, and incurs 40% overhead on average across all test cases.

8.3 Comparison with Non-Runtime-Prevention Approaches

As discussed in Section 1, some related previous work tries to either correct wrong coding in the
software or improve the accuracy of ML APIs. In the following, we use our benchmark suite to
quantitatively show that prior work does not address integration failures.

Static code analysis: A previous work [Wan et al. 2021] summarizes 3 types of ML API misuses
that reduce software functionality. We examine all the applications in our benchmark suite, and
only �nd the existence of misuse pattern using the wrong API : wrongly using text_detection API
to extract handwritten or long-form text from images. We manually patch software by replacing
text_detection API with document_text_detection API. We run the tests in Section 8.2 again
and �nd that these code patches eliminate 4 failures in 3 applications.
Automated testing: A recent work [Wan et al. 2021] automatically generates test cases and

suggests implementation changes for ML software. Instead of preventing failures for each individual
input at run time, it aims to reveal software implementation problems that have statically signi�cant
impacts on the correctness of its synthesized test cases. When applied on our benchmark suite, this
technique suggests code changes in 12 applications. We adopted these changes and executed the
tests in Section 8.2. The evaluation results show that these code changes only eliminate 51 failure
runs in our benchmark suite, improving the execution correctness rate from 84.2% to 85%.
ML API selection: Several works [Chen et al. 2022c, 2020b; Xie et al. 2022] aim at reducing

software failures by dynamically selecting several ML APIs from a set of service providers, with
a constraint on service costs. These approaches focus on the ML API itself instead of integration

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

231:24 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

failures. We do not include them as a baseline, as they use ML APIs from di�erent service providers.
In fact, even when an ideal 100% accurate ML API is chosen, more than half of failures remain,
as they are caused by the mismatch between ML API and software. On the contrary, SmartGear
further improves software accuracy from 89% to 97% after the software adopted an ideal ML API.

9 THREATS TO VALIDITY

Internal threats to validity. SmartGear assumes that the software implementation and code structure
represent the distribution of its run-time inputs, which could be incorrect. The software may be
deployed in an environment di�erent from its designed scenario, where SmartGear cannot cross-
check between ML API and software. SmartGear assumes that ML cloud APIs are reliable at most
of the time, which is not guaranteed.
External threats to validity. SmartGear is only tested with Python applications using Google

Cloud AI, which may not represent all real-world applications. We design application test data
using handcrafted search keywords and limited sources, which may be biased and not cover all
possible software run-time scenarios.

10 RELATED WORK

We discussed some closely related work in Section 1 and 8.3. Here we discuss other related work.
Recent work studies the security of cloud ML services, including defending against attacks [Hou

et al. 2019] and detecting vulnerability [Hosseini et al. 2017; Pajola and Conti 2021]. Other work
evaluates the e�ectiveness of ML cloud service systems [Yao et al. 2017] and ML API shifts [Chen
et al. 2022a]. Another work [Chen et al. 2019] studies cloud service cost. They focus on server-side
implementation instead of using ML API in software.
Prior work [Amershi et al. 2019; Hill et al. 2016; Kim et al. 2016, 2017; Nahar et al. 2022; Zhao

and Gao 2018] studies the principle and challenges for the development team to implement and
maintain software that contains machine learning components. They do not provide solutions
for integration failure. Another line of work studies testing [Cheng et al. 2018; Helle et al. 2016;
Lindvall et al. 2017; Linz 2020; Zhang et al. 2018] and �xing [Wu et al. 2021] algorithms for software
using their own ML solutions. These works focus on optimizing ML models to improve overall
software accuracy, instead of tackling integration failures for individual inputs.
Recent research [Hendrycks et al. 2019; Jaiswal et al. 2020] explored self-supervised learning,

which updates neural network parameters during inference. Some other work [Chen et al. 2022b;
Mummadi et al. 2021; Royer and Lampert 2015; Voigtlaender and Leibe 2017; Wang et al. 2021b;
Zintgraf et al. 2019] further adopts run-time domain adaptation to generalize neural networks.
These work aims to improve the accuracy of neural networks for run-time data that was not seen
during training. They are orthogonal to our approach.
Recent work has looked at how to integrate web APIs into software [Aué et al. 2018; Grent

et al. 2021; Wittern et al. 2017]. Unlike ML-API integration problems, generic web API integration
problems studied in those work all cause crashes or explicit error code returned by API calls.

The research direction of automatic run-time error patching [Lewis and Whitehead 2010; Long
et al. 2014; Perkins et al. 2009] has been pioneered by ClearView [Perkins et al. 2009]. ClearView
attempts to �x a range of run-time errors, such as memory errors, by automatically changing
variable values or control �ows to restore program invariants. SmartGear can be viewed as an
automatic run-time error patching tool that is tailored for �xing ML API integration errors by
changing ML API output.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:25

11 CONCLUSION

Integration failures are widespread and challenging to tackle in machine learning software. In
this paper, we study their root causes and present SmartGear, a run-time tool that prevents some
integration failures by detecting and converting incompatible ML API output. SmartGear is only
a starting point in tackling the integration challenge in using machine learning techniques in
software. We hope SmartGear can inspire future research along this direction.

DATA-AVAILABILITY STATEMENT

The artifact that includes our benchmarks, SmartGear source code, emprical study and experimental
results is available on Github [Wan et al. 2023b] and Zenodo [Wan et al. 2023a].

ACKNOWLEDGEMENT

We thank the reviewers for their insightful feedback. The authors’ research is supported by NSF
(CNS1764039, CNS1956180, CCF2119184, CNS1952050, CCF1823032), ARO (W911NF1920321), and
a DOE Early Career Award (grant DESC0014195 0003). Additional support comes from the CERES
Center for Unstoppable Computing, UChicago Marian and Stuart Rice Research Award, Microsoft
research dissertation grant, and research gifts from Facebook.

REFERENCES

Aander-ETL. 2017. A smart album application. Online document https://github.com/Grusinator/Aander-ETL.
Amazon. 2022a. Amazon arti�cial intelligence service. Online document https://aws.amazon.com/machine-learning/ai-

services.
Amazon. 2022b. Amazon Rekognition Image. Online document https://aws.amazon.com/rekognition/image-features/.
Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan, Besmira

Nushi, and Thomas Zimmermann. 2019. Software engineering for machine learning: A case study. In ICSE-SEIP. IEEE,
291–300. https://doi.org/0.1109/ICSE-SEIP.2019.00042

Joop Aué, Maurício Aniche, Maikel Lobbezoo, and Arie van Deursen. 2018. An exploratory study on faults in web API
integration in a large-scale payment company. In Proceedings of the 40th International Conference on Software Engineering:

Software Engineering in Practice. 13–22.
Yu Bai, Song Mei, Huan Wang, and Caiming Xiong. 2021. Don’t just blame over-parametrization for over-con�dence:

Theoretical analysis of calibration in binary classi�cation. In International Conference on Machine Learning. PMLR,
566–576. https://doi.org/10.48550/arXiv.2102.07856

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds,
and Cesare Tinelli. 2011. CVC4. In Computer Aided Veri�cation - 23rd International Conference, CAV 2011, Snowbird, UT,

USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer
(Eds.). Springer, 171–177. https://doi.org/10.1007/978-3-642-22110-1_14

Johannes Buchner. 2022. ImageHash: An image hashing library written in Python. Online document
https://pypi.org/project/ImageHash/.

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. 2022b. Contrastive Test-time Adaptation. In CVPR. 295–305.
https://doi.org/10.1109/CVPR52688.2022.00039

Lingjiao Chen, Tracy Cai, Matei Zaharia, and James Zou. 2022a. Did the model change? E�ciently assessing machine
learning API shifts. In ICLR Poster. https://doi.org/10.48550/arXiv.2107.14203

Lingjiao Chen, Paraschos Koutris, and Arun Kumar. 2019. Towards model-based pricing for machine learning in a
data marketplace. In Proceedings of the 2019 International Conference on Management of Data. 1535–1552. https:
//doi.org/10.1145/3299869.3300078

Lingjiao Chen, Matei Zaharia, and James Zou. 2022c. FrugalMCT: E�cient Online ML API Selection for Multi-Label
Classi�cation Tasks. In PMLR. https://doi.org/10.48550/arXiv.2102.09127

Lingjiao Chen, Matei Zaharia, and James Y Zou. 2020b. Frugalml: How to use ml prediction apis more accurately and cheaply.
In Advances in neural information processing systems, Vol. 33. 10685–10696. https://doi.org/10.48550/arXiv:2006.07512

Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020a. A review: Knowledge reasoning over knowledge graph. Expert Systems

with Applications 141 (2020), 112948.
Chih-Hong Cheng, Chung-Hao Huang, and Hirotoshi Yasuoka. 2018. Quantitative projection coverage for testing ml-

enabled autonomous systems. In International Symposium on Automated Technology for Veri�cation and Analysis. https:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

https://github.com/Grusinator/Aander-ETL
 https://aws.amazon.com/machine-learning/ai-services
 https://aws.amazon.com/machine-learning/ai-services
 https://aws.amazon.com/rekognition/image-features/
https://doi.org/0.1109/ICSE-SEIP.2019.00042
https://doi.org/10.48550/arXiv.2102.07856
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1109/CVPR52688.2022.00039
https://doi.org/10.48550/arXiv.2107.14203
https://doi.org/10.1145/3299869.3300078
https://doi.org/10.1145/3299869.3300078
https://doi.org/10.48550/arXiv.2102.09127
https://doi.org/10.48550/arXiv:2006.07512
https://doi.org/10.48550/arXiv.1805.04333
https://doi.org/10.48550/arXiv.1805.04333

231:26 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

//doi.org/10.48550/arXiv.1805.04333
Kajaree Das and Rabi Narayan Behera. 2017. A survey on machine learning: concept, algorithms and applications. Interna-

tional Journal of Innovative Research in Computer and Communication Engineering 5, 2 (2017), 1301–1309.
Thomas G Dietterich. 2000. Ensemble methods in machine learning. In International workshop on multiple classi�er systems.

Springer, 1–15. https://doi.org/10.1109/IDEA49133.2020.9170675
FESMKMITL. 2021. A smart album application. Online document https://github.com/matthewjmc/FESMKMITL.
Flood-Depths. 2021. A �ood detection application. Online document https://github.com/nlonberg/�ood-depths.
FortniteTracker. 2019. A real time game tracker application. Online document https://github.com/Godsinred/FortniteKillfeed.
Google. 2022a. Google Cloud AI. Online document https://cloud.google.com/products/ai.
Google. 2022b. Google Cloud Natural Language. Online document https://cloud.google.com/natural-language/docs/categori

es.
Margherita Grandini, Enrico Bagli, and Giorgio Visani. 2020. Metrics for multi-class classi�cation: an overview. arXiv

preprint arXiv:2008.05756 (2020). https://doi.org/10.48550/arXiv.2008.05756
Henk Grent, Aleksei Akimov, and Maurício Aniche. 2021. Automatically identifying parameter constraints in complex

Web APIs: A case study at Adyen. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP). IEEE, 71–80. https://doi.org/10.48550/arXiv.2102.00871
Armin Haller, Axel Polleres, Daniil Dobriy, Nicolas Ferranti, and Sergio J Rodríguez Méndez. 2022. An Analysis of Links in

Wikidata. In European Semantic Web Conference. Springer, 21–38. https://doi.org/10.1007/978-3-031-06981-9_2
Dave Halter. 2022. Jedi: an awesome auto-completion, static analysis and refactoring library for Python. Online document

https://jedi.readthedocs.io.
Philipp Helle, Wladimir Schamai, and Carsten Strobel. 2016. Testing of autonomous systems–Challenges and current

state-of-the-art. In INCOSE international symposium. https://doi.org/10.1002/j.2334-5837.2016.00179.x
Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. 2019. Using self-supervised learning can improve

model robustness and uncertainty. Advances in neural information processing systems 32 (2019). https://doi.org/doi/10.5
555/3454287.3455690

Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016. Trials and tribulations of developers of
intelligent systems: A �eld study. In VL/HCC. https://doi.org/10.1109/VLHCC.2016.7739680

Hossein Hosseini, Baicen Xiao, and Radha Poovendran. 2017. Google’s cloud vision api is not robust to noise. In 2017 16th

IEEE international conference on machine learning and applications (ICMLA). IEEE, 101–105. https://doi.org/10.48550/arX
iv.1704.05051

Jiahui Hou, Jianwei Qian, Yu Wang, Xiang-Yang Li, Haohua Du, and Linlin Chen. 2019. Ml defense: against prediction API
threats in cloud-based machine learning service. In Proceedings of the International Symposium on Quality of Service. 1–10.
https://doi.org/10.1145/3326285.3329042

IBM. 2022. IBM Watson. Online document https://www.ibm.com/watson.
M Irlbeck et al. 2015. Deconstructing dynamic symbolic execution. Dependable Software Systems Engineering 40 (2015), 26.

https://doi.org/10.3233/978-1-61499-495-4-26
Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia Makedon. 2020. A survey on

contrastive self-supervised learning. Technologies 9, 1 (2020), 2. https://doi.org/10.1109/ICAI55435.2022.9773725
Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016. The emerging role of data scientists on

software development teams. In ICSE. https://doi.org/10.1145/2884781.2884783
Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017. Data scientists in software teams: State of

the art and challenges. TSE (2017). https://doi.org/10.1145/3180155.3182515
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. 2011. HMDB: a large video database for human motion recognition.

In Proceedings of the International Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2011.6126543
Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov,

Matteo Malloci, Alexander Kolesnikov, et al. 2020. The open images dataset v4. International Journal of Computer Vision

(2020), 1–26. https://doi.org/10.48550/arXiv.1811.00982
Chris Lewis and Jim Whitehead. 2010. Runtime repair of software faults using event-driven monitoring. In Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2. 275–280. https://doi.org/10.1145/1810295.
1810352

Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph Schulze. 2017. Metamorphic model-based testing of
autonomous systems. In 2017 IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET). https://doi.org/10.1
109/MET.2017.6

Tilo Linz. 2020. Testing Autonomous Systems. In The Future of Software Quality Assurance. Springer, Cham, 61–75.
Lisa-Assistant. 2021. A voice assistant application. Online document https://github.com/AlexNguyen27/lisa-assistant-gcp.
Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. 2014. Automatic runtime error repair and containment via

recovery shepherding. ACM SIGPLAN Notices 49, 6 (2014), 227–238. https://doi.org/10.1145/2594291.2594337

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

https://doi.org/10.48550/arXiv.1805.04333
https://doi.org/10.48550/arXiv.1805.04333
https://doi.org/10.1109/IDEA49133.2020.9170675
https://github.com/matthewjmc/FESMKMITL
https://github.com/nlonberg/flood-depths
https://github.com/Godsinred/FortniteKillfeed
 https://cloud.google.com/products/ai
 https://cloud.google.com/natural-language/docs/categories
 https://cloud.google.com/natural-language/docs/categories
https://doi.org/10.48550/arXiv.2008.05756
https://doi.org/10.48550/arXiv.2102.00871
https://doi.org/10.1007/978-3-031-06981-9_2
https://jedi.readthedocs.io
https://doi.org/10.1002/j.2334-5837.2016.00179.x
https://doi.org/doi/10.5555/3454287.3455690
https://doi.org/doi/10.5555/3454287.3455690
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.48550/arXiv.1704.05051
https://doi.org/10.48550/arXiv.1704.05051
https://doi.org/10.1145/3326285.3329042
 https://www.ibm.com/watson
https://doi.org/10.3233/978-1-61499-495-4-26
https://doi.org/10.1109/ICAI55435.2022.9773725
https://doi.org/10.1145/2884781.2884783
https://doi.org/10.1145/3180155.3182515
https://doi.org/10.1109/ICCV.2011.6126543
https://doi.org/10.48550/arXiv.1811.00982
https://doi.org/10.1145/1810295.1810352
https://doi.org/10.1145/1810295.1810352
https://doi.org/10.1109/MET.2017.6
https://doi.org/10.1109/MET.2017.6
https://github.com/AlexNguyen27/lisa-assistant-gcp
https://doi.org/10.1145/2594291.2594337

Run-Time Prevention of So�ware Integration Failures of Machine Learning APIs 231:27

David Marby and Nijiko Yonskai. 2021. Pyan3: O�ine call graph generator for Python 3. Online document https:
//github.com/davidfraser/pyan.

Ronaldo Messina and Jerome Louradour. 2015. Segmentation-free handwritten Chinese text recognition with LSTM-RNN.
In 2015 13th International conference on document analysis and recognition (icdar). IEEE, 171–175. https://doi.org/10.1109/
ICDAR.2015.7333746

Microsoft. 2022a. Microsoft Azure Cognitive Services. Online document https://azure.microsoft.com/en-us/services/cognit
ive-services.

Microsoft. 2022b. Microsoft Azure Image Tagging. Online document https://docs.microsoft.com/en-us/azure/cognitive-
services/computer-vision/concept-tagging-images.

Hong Minhee. 2021. Python interface for Wikidata. Online document https://pypi.org/project/Wikidata/.
Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox, and Jan Hendrik Metzen.

2021. Test-time adaptation to distribution shift by con�dence maximization and input transformation. arXiv preprint
arXiv:2106.14999 (2021). https://doi.org/10.48550/arxiv.2106.14999

Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2022. Collaboration Challenges in Building ML-Enabled
Systems: Communication, Documentation, Engineering, and Process. Organization 1, 2 (2022), 3. https://doi.org/10.114
5/3510003.3510209

Luca Pajola and Mauro Conti. 2021. Fall of Giants: How popular text-based MLaaS fall against a simple evasion attack. In
2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 198–211. https://doi.org/10.1109/EuroSP51992.
2021.00023

Karen Panetta, Landry Kezebou, Victor Oludare, James Intriligator, and Sos Agaian. 2021. Arti�cial Intelligence for Text-
Based Vehicle Search, Recognition, and Continuous Localization in Tra�c Videos. AI 2, 4 (2021), 684–704. https:
//doi.org/10.23919/FRUCT49677.2020.9211020

Je� H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank
Sherwood, Stelios Sidiroglou, Greg Sullivan, et al. 2009. Automatically patching errors in deployed software. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles. 87–102. https://doi.org/10.1145/1629575.1629585

Plant-Watcher. 2018. A plant management application. Online document https://github.com/siwasu17/plant-watcher.
ProjectSyn. 2020. A voice-activated light application. Online document https://github.com/mochiliu/projectsyn.
RoomR. 2020. A property management application. Online document https://github.com/rodrigoHM/RoomR-Server.
Amelie Royer and Christoph H Lampert. 2015. Classi�er adaptation at prediction time. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 1401–1409.
SeeFarBeyond. 2022. A coin �nder application. Online document https://github.com/arosloff/SeeFarBeyond.
Apeksha Shewalkar. 2019. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and

GRU. Journal of Arti�cial Intelligence and Soft Computing Research 9, 4 (2019), 235–245.
SmartCan. 2019. An garbage classi�cation application. Online document https://github.com/ertheosiswadi/smart_can.
Kevin D. Smith, Jim J. Jewett, Skip Montanaro, and Anthony Baxter. 2022. PEP 318 âĂŞ Decorators for Functions and

Methods. Online document https://peps.python.org/pep-0318/.
Victor Stinner. 2021. Bytecode: Python module to generate and modify bytecode. Online document https://pypi.org/project

/bytecode/.
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014.

Intriguing properties of neural networks. In ICLR. https://doi.org/10.1109/CRV.2019.00010
Paul Voigtlaender and Bastian Leibe. 2017. Online adaptation of convolutional neural networks for video object segmentation.

In BMVC. https://doi.org/10.48550/arXiv.1706.09364
Chengcheng Wan, Shicheng Liu, Henry Ho�mann, Michael Maire, and Shan Lu. 2021. Are Machine Learning Cloud APIs

Used Correctly?. In 43th International Conference on Software Engineering (ICSE’21). https://doi.org/10.1109/ICSE43902.
2021.00024

Chengcheng Wan, Shicheng Liu, Sophie Xie, Yifan Liu, Henry Ho�mann, Michael Maire, and Shan Lu. 2022. Automated
Testing of Software that Uses Machine Learning APIs. In 44th International Conference on Software Engineering (ICSE’22).
https://doi.org/10.1145/3510003.3510068

Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu. 2023a. Artifact for
"Run-Time Prevention of Software Integration Failures of Machine Learning APIs". Online document https://zenodo.org
/record/8106520.

Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu. 2023b. SmartGear.
Online document https://github.com/mlapistudy/SmartGear.

DequanWang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. 2021b. Tent: Fully Test-time Adaptation
by Entropy Minimization. In ICLR. https://doi.org/10.48550/arXiv.2006.10726

Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. 2021a. Rethinking calibration of deep neural networks: Do not be afraid of
overcon�dence. Advances in Neural Information Processing Systems 34 (2021), 11809–11820.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

https://github.com/davidfraser/pyan
https://github.com/davidfraser/pyan
https://doi.org/10.1109/ICDAR.2015.7333746
https://doi.org/10.1109/ICDAR.2015.7333746
https://azure.microsoft.com/en-us/services/cognitive-services
https://azure.microsoft.com/en-us/services/cognitive-services
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-tagging-images
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-tagging-images
https://pypi.org/project/Wikidata/
https://doi.org/10.48550/arxiv.2106.14999
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1109/EuroSP51992.2021.00023
https://doi.org/10.1109/EuroSP51992.2021.00023
https://doi.org/10.23919/FRUCT49677.2020.9211020
https://doi.org/10.23919/FRUCT49677.2020.9211020
https://doi.org/10.1145/1629575.1629585
https://github.com/siwasu17/plant-watcher
https://github.com/mochiliu/projectsyn
https://github.com/rodrigoHM/RoomR-Server
https://github.com/arosloff/SeeFarBeyond
https://github.com/ertheosiswadi/smart_can
https://peps.python.org/pep-0318/
https://pypi.org/project/bytecode/
https://pypi.org/project/bytecode/
https://doi.org/10.1109/CRV.2019.00010
https://doi.org/10.48550/arXiv.1706.09364
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1145/3510003.3510068
https://zenodo.org/record/8106520
https://zenodo.org/record/8106520
https://github.com/mlapistudy/SmartGear
https://doi.org/10.48550/arXiv.2006.10726

231:28 Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Ho�mann, Junchen Jiang, Michael Maire, and Shan Lu

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. 2018. Hierarchical multi-label classi�cation networks. In International
conference on machine learning. PMLR, 5075–5084. https://doi.org/10.18653/v1/2022.emnlp-main.610

Wikidata. 2022. A free and open knowledge base. Online document https://www.wikidata.org/.
Erik Wittern, Annie TT Ying, Yunhui Zheng, Julian Dolby, and Jim A Laredo. 2017. Statically checking web API requests

in JavaScript. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, 244–254. https:
//doi.org/10.1109/ICSE.2017.30

Ruihan Wu, Chuan Guo, Awni Hannun, and Laurens van der Maaten. 2021. Fixes that fail: Self-defeating improvements
in machine-learning systems. Advances in Neural Information Processing Systems 34 (2021), 11745–11756. https:
//doi.org/10.48550/arXiv.2103.11766

Shuzhao Xie, Yuan Xue, Yifei Zhu, and Zhi Wang. 2022. Cost E�ective MLaaS Federation: A Combinatorial Reinforcement
Learning Approach. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 1–10. https://doi.org/
10.1109/INFOCOM48880.2022.9796701

Keiji Yanai and Yoshiyuki Kawano. 2015. Food image recognition using deep convolutional network with pre-training
and �ne-tuning. In 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 1–6. https:
//doi.org/10.1109/ICMEW.2015.7169816

Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. 2017. Complexity vs.
performance: empirical analysis of machine learning as a service. In Proceedings of the 2017 Internet Measurement

Conference. 384–397.
Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based metamorphic

testing and input validation framework for autonomous driving systems. In ASE. IEEE, 132–142. https://doi.org/10.1145/
3238147.3238187

Xinghan Zhao and Xiangfei Gao. 2018. An ai software test method based on scene deductive approach. In 2018 IEEE

International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 14–20. https://doi.org/10
.1007/978-3-031-11713-8_21

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. 2019. Fast context adaptation via meta-
learning. In International Conference on Machine Learning. PMLR, 7693–7702. https://doi.org/10.48550/arXiv.1810.03642

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 231. Publication date: October 2023.

https://doi.org/10.18653/v1/2022.emnlp-main.610
https://www.wikidata.org/
https://doi.org/10.1109/ICSE.2017.30
https://doi.org/10.1109/ICSE.2017.30
https://doi.org/10.48550/arXiv.2103.11766
https://doi.org/10.48550/arXiv.2103.11766
https://doi.org/10.1109/INFOCOM48880.2022.9796701
https://doi.org/10.1109/INFOCOM48880.2022.9796701
https://doi.org/10.1109/ICMEW.2015.7169816
https://doi.org/10.1109/ICMEW.2015.7169816
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1007/978-3-031-11713-8_21
https://doi.org/10.1007/978-3-031-11713-8_21
https://doi.org/10.48550/arXiv.1810.03642

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions

	2 Background
	2.1 ML Cloud Service
	2.2 Knowledge Graph

	3 Understanding Integration Failures
	3.1 Methodology
	3.2 Testing Result Summary
	3.3 Root Cause 1: Mismatch between ML API and Software
	3.4 Root Cause 2: Incorrectness of ML API Output

	4 Overview of SmartGear
	5 Tackling Mismatched ML API Outputs
	5.1 Obtaining Focal Values
	5.2 Understanding Cognitive Relationship
	5.3 Tackling Hierarchy Mismatch
	5.4 Tackling Perspective Mismatch
	5.5 Tackling Focus Mismatch
	5.6 Limitations and Discussions

	6 Tackling Incorrect ML API Outputs
	6.1 Validation across APIs
	6.2 Validation across Inputs
	6.3 Validating across Software and ML API
	6.4 Limitations and Discussions

	7 Implementation
	8 Evaluation
	8.1 Methodology
	8.2 Evaluation Results
	8.3 Comparison with Non-Runtime-Prevention Approaches

	9 Threats to Validity
	10 Related Work
	11 Conclusion
	References

