
PADD: Prefix-based Attention Divergence Detector for LLM
Jailbreaks

Ziqun Bao
East China Normal University

Shanghai, China
52285902029@stu.ecnu.edu.cn

Jiaqiang Niu
Zhejiang Sci-Tech University

Zhejiang, China
niubuyi36@gmail.com

Yuchen Shao
East China Normal University
Shanghai Innovation Institute

Shanghai, China
ycshao@stu.ecnu.edu.cn

Chengcheng Wan∗
East China Normal University
Shanghai Innovation Institute

Shanghai, China
ccwan@sei.ecnu.edu.cn

Abstract
Large Language Models (LLMs) have achieved remarkable progress
in understanding and generation tasks, yet they remain highly
susceptible to adversarial prompt attacks that bypass safety safe-
guards and induce the generation of harmful content. Existing
pre-generation and post-generation defense methods typically rely
on intent recognition, surface-level features, or external classifiers,
rendering them vulnerable to evasion via subtle prompt perturba-
tions while incurring substantial computational overhead.

In this paper, we propose PADD (Prefix-based Attention Diver-
gence Detector), a lightweight pre-generation defense mechanism
that leverages internal model signals for robust attack detection.
At its core, PADD prepends a lightweight safety prefix to the input
prompt and compares attention distributions between the original
and prefixed prompts. By transforming cross-prompt comparisons
into self-comparisons via composite signals of attention divergence
and attention plasticity, PADD achieves strong separability between
adversarial and benign prompts with low-latency detection, without
requiring modifications or fine-tuning of the base model. Exten-
sive experiments across four mainstream open-source LLMs and
multiple public benchmarks demonstrate that PADD significantly
reduces attack success rates (0.4–3.0%) while maintaining low false
rejection rates (0–5.2%). These results position PADD as a scalable,
efficient, and practical safeguard for LLM safety.

CCS Concepts
• Security and privacy → Usability in security and privacy; •
Computing methodologies→ Artificial intelligence.

Keywords
LLM Safety, Jailbreak Detection, Pre-generation Defense

∗Chengcheng Wan is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW ’26, Dubai, United Arab Emirates
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2307-0/2026/04
https://doi.org/10.1145/3774904.3792204

ACM Reference Format:
Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan. 2026. PADD:
Prefix-based Attention Divergence Detector for LLM Jailbreaks . In Pro-
ceedings of the ACM Web Conference 2026 (WWW ’26), April 13–17, 2026,
Dubai, United Arab Emirates. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3774904.3792204

1 Introduction
1.1 Motivation
Due to the advanced language understanding capability of large
language models (LLMs), many web service providers have inte-
grated LLMs in their applications. However, this inevitably intro-
duces safety vulnerabilities: adversarial prompts can bypass safe-
guards and elicit unsafe or policy-violating outputs [39, 51], and
such harms are enlarged in the web environment. Recent studies
show that such attacks are ubiquitous and continually evolving in
real-world LLM-based web applications, degrading usability and
safety [36, 42]. Existing post-generation defenses verify outputs
after completion [28, 33], but they are insufficient in time for user
interaction. Consequently, there is an urgent need to proactively and
efficiently detect adversarial prompts before any response is generated,
mitigating risks at the earliest stage of interaction.

The timing of defense is critical in real-world LLM deployment.
Once post-generation methods detect a jailbreak, unsafe content
(i.e., offensive language, discriminatory remarks, misinformation,
or even instructions for illegal activities) has already been produced,
leading to harm that is often irreversible [10, 11, 39]. Moreover, due
to the streaming nature of LLM applications, such content may
already have been displayed to users, logged by the system, or prop-
agated to downstream components [12, 26]. These risks underscore
the need for pre-generation defenses: proactively identifying and
intercepting high-risk prompts before any text is generated, thereby
preventing harm at the earliest stage of interaction.

One line of research designs pre-generation detectors that as-
sess the safety of LLM prompts, such as embedding-based clas-
sifiers [2], token-level statistical anomaly detectors [15], and ex-
ternally trained prompt classifiers [16]. However, these methods
are vulnerable to synonym substitution, minor perturbations, sur-
face obfuscation, and other techniques that disguise adversarial
prompts as benign. They also rely heavily on surface-level fea-
tures (e.g., prompt template and format) and require large labeled

https://orcid.org/0009-0001-0409-2614
https://orcid.org/0009-0005-8144-3966
https://orcid.org/0009-0009-0414-7521
https://orcid.org/0000-0001-9162-9688
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792204
https://doi.org/10.1145/3774904.3792204
https://doi.org/10.1145/3774904.3792204

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan

Figure 1: An example of detecting adversarial prompts.

datasets, leading to high maintenance costs and poor cross-model
or cross-domain generalization [4, 17, 31]. Another research direc-
tion proposes post-generation defenses that evaluate the safety
of generated responses, including harmfulness classifiers [28] and
safety-prefix mitigation [47]. However, as noted earlier, these ap-
proaches cannot prevent irreversible downstream harm [40].

Figure 1 presents three concrete examples. The first prompt,
although benign, contains the sensitive word “kill,” which can eas-
ily trigger false rejections in embedding-based and token-level
solutions. The second prompt is an adversarial one with a suffix
targetedly generated by GCG [51], and thus successfully bypasses
most existing detection solutions. The third prompt is another ad-
versarial one with a jailbreak-style template and format. With the
continuous evolution of adversarial prompts, it is hard for classi-
fiers that require prior knowledge (e.g., require training or rely on
surface-level patterns) to identify them.

These demonstrate three main challenges of detecting adversar-
ial prompts before response generation.

1) Similarity between adversarial and benign prompts. Ad-
versarial prompts are often deliberately crafted to resemble benign
ones, rendering keyword-based rules, surface-level heuristics, and
embedding-based detectors ineffective in distinguishing between
harmful and safe inputs. As shown in Figure 1, both adversarial and
benign prompts may include the keyword kill, resulting in highly
similar surface and embedding features. This challenge requires a
robust solution capable of extracting discriminative signals even
under high surface or semantic similarity.

2) Variability in prompt template and format. LLM takes
free-text prompt as its input, which has diverse templates and
formats. Such diversity has substantial impact on the tokeniza-
tion process and embedding representations, leading to an out-of-
distribution problem of the detector that trains on a limited set of
prompt data. Designing a general solution for the diverse real-world
prompts remains an open question.

3) Lack of clear jailbreak signals. Adversarial prompt detec-
tors rely on jailbreak signals to guide decisions. Ideally, such signals
should be low-dimensional and calibratable with a small number of
samples. However, current implementations often fail to meet these
requirements, incurring high computational cost and lacking stable,
thresholdable interpretations for numerical signals. To enable real-
time pre-generation defenses, we must identify jailbreak signals
that reliably distinguish high-risk from benign prompts, support
low-latency deployment, and allow stable calibration with minimal
labeled data—a challenging task.

1.2 Contribution
In this paper, we propose PADD, an automated tool that detects
adversarial prompts and LLM jailbreaks at pre-generation stage.

To address Challenge-1&2, PADD employs a probe-based strat-
egy that prepends a short safety prefix to the original prompt,
amplifying the distinction between adversarial and benign inputs.
It then feeds both the original and prefixed prompts into the LLM
and compares their hidden states (i.e. attention tensors), which cap-
ture token focus and high-level semantic information. We observe
that adversarial prompts typically induce significant and unstable
shifts in attention distributions under the safety prefix, whereas
benign prompts remain stable and adapt flexibly. Leveraging this
property, PADD captures differences in prompt intent without rely-
ing on surface-level patterns. In particular, it applies position-aware
canonicalization and compression to the attention tensors, produc-
ing low-dimensional feature summaries.

To tackle Challenge-3, PADD designs a risk score function which
fuses the feature summaries to characterize the difference between
original and prefixed prompts, given the insight that a larger dif-
ference corresponds to a higher jailbreak risk. To determine the
threshold, we design a lightweight calibration pipeline that lever-
ages statistical methods and a small validation set for each LLM.

We evaluate PADD across multiple LLM families and four pub-
lic adversarial-prompt benchmarks. Evaluation results show that
PADD reduces the average attack success rate (ASR) down to
0.4–3.0% across all models, 70–90% smaller than the baselines.
PADD also maintains a low false rejection rate (FRR) of 0–5.2%,
significantly outperforming baselines.

2 Preliminaries and Main Idea
2.1 Problem Formulation
This paper aims to detect whether a user-issued prompt is an ad-
versarial prompt before the response generation.
Input. The input is a target LLM𝑀 and a user-issued prompt 𝑥 .𝑀
is unmodifiable, with all parameters accessible.
Definition of adversarial prompt. In a sense, any prompt with
malicious intent that attempts to induce the model to produce un-
safe content can be regarded as an adversarial prompt. In this paper,
we regard a prompt as adversarial only if it can bypass the safety
guardrails of a specific model and lead to harmful outputs [20].
Task objective. Our objective is to determine whether a given
prompt 𝑥 is adversarial before any response is generated. Formally,
we define a risk scoring function 𝐽 (𝑥) that estimates the likelihood
of𝑥 being adversarial. A prompt is classified as adversarial or benign
according to a threshold 𝜏 :

Judge(𝑥) = I{𝐽 (𝑥) > 𝜏}, (1)

where I{·} denotes the indicator function, returning 1 if the con-
dition holds and 0 otherwise. Thus, prompts with 𝐽 (𝑥) > 𝜏 are
flagged as adversarial, while the rest are treated as benign. This
formulation converts continuous scores into a deployable binary
decision. Note that the threshold 𝜏 is model-dependent, and its
optimal value may vary across different LLMs.

2.2 Main Ideas
We present the key ideas behind our solution.

PADD: Prefix-based Attention Divergence Detector for LLM Jailbreaks WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Observation 1. When a lightweight safety prefix is prepended,
adversarial and benign prompts display fundamentally different
behaviors in their attention distributions. Specifically, adversar-
ial prompts often induce significant and unstable attention shifts,
whereas benign prompts remain stable or adapt smoothly to the per-
turbation. This suggests that even when the two types of prompts
appear similar at the surface level, they elicit systematically distinct
internal responses within the model.
Key Idea 1: Safety prefix as a probe. Motivated by this obser-
vation, PADD employs a fixed safety prefix as a controlled probe.
By comparing the internal responses of the original and prefixed
prompts, PADD amplifies intent-related differences and obtains reli-
able, self-comparable signals independent of surface-level patterns.

Observation 2. The gap between adversarial and benign prompts is
not only pronounced but also stable at the signal level. Specifically,
adversarial prompts exhibit attention patterns sensitive to local
perturbations, amplifying irrelevant noise and producing unstable
fluctuations. In contrast, benign prompts yield consistent attention
distributions that preserve structural stability under varying con-
ditions. This relative stability provides a reliable foundation for
distinguishing between adversarial and benign prompts.
Key Idea 2: Compressing stable differences into a discrimina-
tive signal. Building on this observation, we note that adversarial
and benign prompts differ consistently in the robustness of their
attention responses. To capture this difference, PADD converts high-
dimensional attention tensors into compact, discriminative signals
through three steps: (i) aligning prefixed and original sequences to
remove length mismatch, (ii) normalizing attention distributions
to eliminate systematic bias, and (iii) aggregating features across
layers, heads, and positions to suppress local noise. This process
yields two complementary measures, perturbation sensitivity and
attention plasticity, which together form a stable, low-dimensional
representation suited for adversarial prompt detection.

3 PADD: An LLM Jailbreak Detector
Based on the key ideas, we design PADD, a Prefix-based Attention
Divergence Detector that automatically detects LLM jailbreaks
before response generation.

3.1 Overview
As illustrated in Figure 2, PADD employs a five-stage workflow that
transforms a user prompt into an interpretable jailbreak judgment.
First, the safety prefix insertion stage prepends a short prefix 𝑝 to
the original prompt 𝑥 to form its variant 𝑥 . Second, the attention
feature extraction stage processes both 𝑥 and 𝑥 through the LLM and
computes the average attention tensors across all heads and layers.
Third, the position alignment stage aligns 𝑥 and 𝑥 by discarding
prefix-related positions and applying row-wise normalization to
eliminate length bias. Fourth, the jailbreak signal acquisition stage
derives two complementary signals from four vectors: the final-
token attention distributions of 𝑥 and 𝑥 , along with their respective
global average attention distributions. Finally, the jailbreak judg-
ment stage integrates these signals into a composite score 𝐽 (𝑥),
which classifies the prompt as adversarial or benign.

3.2 Safety Prefix Insertion
The core idea of safety prefix insertion is to introduce a lightweight
and controlled perturbation that enables self-comparison within the
same prompt. Specifically, given a user-issued prompt𝑥 , we prepend
a short safety prefix 𝑝 and obtain its prefixed variant 𝑥 = 𝑝 ∥ 𝑥 ,
where ∥ denotes concatenation (details in Appendix B).

This design is based on the heuristics that minor perturbations
rarely alter benign prompts but often trigger abnormal or unstable
attention responses in adversarial ones. Constructing the pair (𝑥, 𝑥)
yields two inputs with identical semantics but distinct prefixes,
converting the difficult cross-prompt comparison into a controllable
within-prompt analysis. This step provides a reliable foundation
for extracting jailbreak signals in subsequent stages.

3.3 Attention Feature Extraction
Attention feature extraction utilizes the model’s attention tensors to
characterize its internal response patterns across layers and heads.
Specifically, we input both the original prompt 𝑥 and its prefixed
variant 𝑥 into the model with attention outputs enabled, collecting
attention matrices from all layers and heads. As LLMs are causal
decoder-only architectures, these matrices are lower-triangular.

To obtain a compact yet informative representation, we compute
the global mean of all attention matrices:

Ā =
1

𝐿 𝐻head

𝐿∑︁
ℓ=1

𝐻head∑︁
𝑗=1

Aℓ, 𝑗 , (2)

where Aℓ, 𝑗 ∈ R𝑇×𝑇 denotes the softmax-normalized attention
matrix from layer ℓ and head 𝑗 , and 𝑇 is the input sequence length.
Because of the inserted safety prefix, the matrix of 𝑥 is longer than
that of 𝑥 by exactly the number of prefix tokens.

We adopt this aggregation strategy for two reasons: (i) the global
mean retains comprehensive information across layers and heads,
offering a holistic perspective on the model’s attention behavior;
and (ii) condensing all attention matrices into one reduces compu-
tational cost, enhancing the efficiency of subsequent processing.

3.4 Position Alignment
Position alignment eliminates the sequence length discrepancy
caused by the safety prefix, enabling comparison of the attention
distributions of the original prompt 𝑥 and its prefixed variant 𝑥
within a shared semantic space. This process involves two steps:
truncation and re-normalization.

3.4.1 Truncation. The original prompt 𝑥 has length 𝑇𝑥 , while its
prefixed variant 𝑥 has length𝑇𝑥 + |𝑝 |, where |𝑝 | is the prefix length.
Due to this mismatch, their attention distributions differ in di-
mensionality and cannot be directly compared. To align them, we
remove the first |𝑝 | prefix-related dimensions from 𝛼𝑥̃ , keeping
only the part corresponding to the semantics of 𝑥 . Although these
prefix dimensions are truncated, 𝑥 has already undergone forward
propagation, so the remaining portion implicitly reflects the prefix-
induced perturbation, making this operation justified. Formally,

𝛼
aligned
𝑥̃

= 𝛼𝑥̃ [|𝑝 | : |𝑝 | +𝑇𝑥] . (3)

Here, 𝛼𝑥 ∈ R𝑇𝑥 is the attention distribution of 𝑥 , 𝛼𝑥̃ ∈ R𝑇𝑥+|𝑝 | is
that of 𝑥 , and 𝛼aligned

𝑥̃
∈ R𝑇𝑥 is the aligned result after truncation.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan

Stage4:
Jailbreak signal acquisition

 Stage5:
Jailbreak judgment

� =
��

��

�푢��� = 푗푎푖푙���푎� � > �
��푛푖�푛 � < �

Risk scoring

Decision

Stage1:
Safety prefix insertion

Safety Prefix User Prompt

�

��

Compare
risk score to
threshold

�:
Calibrated Using Validation Set

Stage3:
Position alignment

��

��

��

��

Drop
Truncation

Truncation

��

��

푎�

푎�

Row-wise
softmax

Row-wise
softmax

Re-normalizationStage2: Attention feature
extraction

� ��

�

� ��

�

Attention Plasticity

Measure
Entropy Difference

� = ℎ� − ℎ�

Row-wise
relative entropy

푎� ℎ�

Row-wise
relative entropy

푎� ℎ�

Attention Perturbation

� = �log �
�

KL Divergence

r

q
Quantify
Attention Shift

Last Token

Last Token

Figure 2: Overview of the PADD framework.

3.4.2 Re-normalization. Truncation disrupts the row-wise stochas-
ticity of attentionmatrices: after removing prefix columns, each row
no longer sums to 1. To restore comparability, we independently
re-normalize each row using a standard softmax.

Let Ā𝑥 ∈ R𝑇𝑥×𝑇𝑥 denote the averaged attention matrix of the
original prompt 𝑥 , and Āaligned

𝑥̃
∈ R𝑇𝑥×𝑇𝑥 that of the aligned pre-

fixed prompt. For a query position 𝑡 (1 ≤ 𝑡 ≤ 𝑇𝑥), only the first
𝑁𝑡 = 𝑡 keys are causally visible in a decoder-only model. Thus, we
take

s(𝑡)𝑠 = Ā𝑥 [𝑡, 1 :𝑁𝑡], s(𝑡)
𝑓

= Āaligned
𝑥̃

[𝑡, 1 :𝑁𝑡], (4)

and apply row-wise softmax normalization:

softmax(s) [𝑖] = exp(s[𝑖])∑𝑁𝑡

𝑘=1 exp(s[𝑘]) + 𝜀
. (5)

The re-normalized results are

a(𝑡)𝑠 = softmax(s(𝑡)𝑠), a(𝑡)
𝑓

= softmax(s(𝑡)
𝑓

), (6)

where a(𝑡)𝑠 , a(𝑡)
𝑓

∈ R𝑁𝑡 represent the normalized attention distribu-
tions at position 𝑡 for 𝑥 and 𝑥 , respectively. Both are row-stochastic
and directly comparable across the two prompts.

3.5 Jailbreak Signal Acquisition
Jailbreak signal acquisition quantifies how the safety prefix influ-
ences the model’s internal attention patterns and converts these
effects into indicators that differentiate benign from adversarial
prompts. We examine two complementary aspects: (1) Attention
Perturbation (𝐾), measuring whether the safety prefix notably
alters the final-token attention distribution; and (2)Attention Plas-
ticity (𝐻), assessing whether it modifies the global characteristics
of attention distributions.

3.5.1 Attention perturbation (𝐾). It quantifies how the safety prefix
alters the final-token attention distribution, reflecting the model’s
sensitivity near its decision boundary. In decoder-only LLMs, the
final token integrates all prior context before producing the fol-
lowing output, making its attention distribution an informative
representation of the model’s decision state.

Let 𝑞 ∈ R𝑇𝑥 denote the normalized final-token attention dis-
tribution of the original prompt 𝑥 (i.e., 𝑞 = 𝑎

(𝑇𝑥)
𝑠), and 𝑟 ∈ R𝑇𝑥

the corresponding aligned distribution of the prefixed prompt 𝑥
(i.e., 𝑟 = 𝑎 (𝑇𝑥)

𝑓
). Their discrepancy is measured using the Kullback–

Leibler (KL) divergence:

𝐾 =

𝑇𝑥∑︁
𝑖=1

𝑞(𝑖) log
𝑞(𝑖)
𝑟 (𝑖) . (7)

where 𝑞(𝑖) and 𝑟 (𝑖) represent the final-token attention weights at
position 𝑖 under 𝑥 and 𝑥 , respectively.

The value of 𝐾 indicates the degree of perturbation induced by
the prefix. For benign prompts, 𝐾 remains small since the prefix
minimally affects the model’s decision state. Adversarial prompts,
however, often yield markedly larger 𝐾 values, as the prefix ampli-
fies attention shifts in low-probability regions, steering the model
toward unsafe outputs. Thus, 𝐾 serves as a discriminative indicator
of jailbreak susceptibility. As shown in Appendix A.1, 𝐾 can be ap-
proximated by a Fisher-weighted quadratic form, which we adopt
to reduce computation without compromising detection accuracy.

3.5.2 Attention plasticity (𝐻). It quantifies how the safety prefix
globally modifies the characteristics of attention distributions, re-
flecting the model’s adaptability in processing inputs. Unlike Atten-
tion Perturbation, which examines only the final token, plasticity
considers attention patterns across all positions to provide a holistic
view of the model’s internal dynamics.

PADD: Prefix-based Attention Divergence Detector for LLM Jailbreaks WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Relative entropy computation. In decoder-only architectures with
causal masking, the token at position 𝑡 can attend only to the first
𝑁𝑡 = 𝑡 tokens, resulting in attention distributions of varying lengths.
Direct comparison of Shannon entropies across different lengths is
thus invalid. To eliminate this bias, we define relative entropy by
normalizing entropy with its theoretical maximum log𝑁𝑡 :

ℎ
(ℓ, 𝑗)
𝑥 (𝑡) = −

∑𝑁𝑡

𝑖=1 𝑝
(ℓ, 𝑗)
𝑥 (𝑡) [𝑖] log 𝑝 (ℓ, 𝑗)𝑥 (𝑡) [𝑖]

log𝑁𝑡
. (8)

Here, 𝑝 (ℓ, 𝑗)𝑥 (𝑡) is the softmax-normalized attention distribution at
query position 𝑡 in layer ℓ and head 𝑗 . The denominator log𝑁𝑡 rep-
resents the entropy of a uniform distribution, ensuring ℎ (ℓ, 𝑗)𝑥 (𝑡) ∈
[0, 1]. Lower ℎ values indicate concentrated attention, while higher
values correspond to more uniform distributions. For 𝑡 = 1, where
𝑁𝑡 = 1 and log𝑁𝑡 = 0, the ratio is undefined; we therefore set
ℎ
(ℓ, 𝑗)
𝑥 (1) = 1 by convention.

Plasticity score. Let a𝑠 and a𝑓 denote the row-stochastic atten-
tion matrices (after re-normalization) for the original and prefixed
prompts, respectively. We compute the relative entropy of each
row to obtain ℎ𝑠 (𝑡) and ℎ𝑓 (𝑡), whose differences indicate how the
safety prefix alters attention plasticity. The overall plasticity score
is defined as

𝐻 =
1

𝑇𝑥 − 1

𝑇𝑥∑︁
𝑡=2

��ℎ𝑠 (𝑡) − ℎ𝑓 (𝑡)
�� . (9)

The absolute difference prevents positive and negative changes
from offsetting each other, while averaging across positions yields
a global measure. Adversarial prompts tend to keep attention per-
sistently locked on a few harmful tokens and remain insensitive to
prefix interventions (i.e., the distributions stay nearly unchanged or
vary slightly under perturbation), thereby producing smaller 𝐻 . In
contrast, benign prompts exhibit more adaptive adjustments under
prefix perturbation, leading to larger 𝐻 . Appendix A.2 proves that
the normalized entropy varies in a Lipschitz-continuous manner un-
der distributional perturbations, providing a theoretical foundation
for the stability of this measure as a discriminative indicator.

Beyond their definitions, we analyze the statistical distributions
of𝐾 and𝐻 and show in Appendix A.3 that both follow a log-normal
approximation, empirically validated in Figure 4. This finding not
only offers a theoretical characterization and interpretation of their
behavior but also provides a statistical basis for subsequent thresh-
old calibration and decision-making strategies.

3.6 Jailbreak Judgment
In Jailbreak Judgment, the two complementary indicators, the at-
tention perturbation score 𝐾 and attention plasticity score 𝐻 , are
combined into a unified decision metric, enabling binary detection
of jailbreak risk.

The composite score is defined as

𝐽 (𝑥) =
𝐾𝛼

𝐻𝛽
, (10)

where 𝛼, 𝛽 are tunable hyper-parameters controlling their relative
influence (default 𝛼 = 𝛽 = 1). Intuitively, adversarial prompts
typically show strong perturbation sensitivity (large 𝐾) but low
plasticity (small 𝐻), yielding a markedly higher 𝐽 (𝑥).

Table 1: Statistics of the training and testing datasets.

Dataset Method #Samples

Training

GCG [51] 100
PAIR [6] 100
DSN [49] 100

AutoDAN [22] 100
GPT-5 generated prompts (non-jailbreak) 100

Total 500

Testing

GCG [51] 400
DeepInception [21] 400
AutoDAN [22] 400

TBD [23] 400
XSTest [23] (non-jailbreak) 250

GPT-5 generated prompts (non-jailbreak) 150

Total 2,000

To convert the continuous score into a binary decision, we cali-
brate an optimal threshold 𝜏 using the Youden index, which identi-
fies the cutoff that maximizes the sum of sensitivity and specificity.
The decision rule is formulated as

Judge(𝑥) = I{𝐽 (𝑥) > 𝜏}, (11)

where I{·} denotes the indicator function. Prompts with 𝐽 (𝑥) >

𝜏 are classified as adversarial, and those below the threshold as
benign. The threshold 𝜏 is model-dependent and calibrated on a
small labeled training set (see Section 4.1.3). Specifically, the Youden
index is defined as

Youden = TPR − FPR, (12)

where TPR and FPR denote the true positive and false positive rates,
respectively. We compute the index across candidate thresholds on
the validation set and select the 𝜏 that maximizes it. In our exper-
iments, 𝜏 is determined via the Youden index. Appendix A.4∼A.6
provides the formula of 𝜏 that is analytically derived from the class-
conditional distributions of (𝐾,𝐻) under a log-normal aggregation
model.

4 Evaluation
4.1 Experimental Setup
4.1.1 Target attack methods. PADD is evaluated against 4 types of
jailbreak techniques.
• GCG [51]: a gradient-based adversarial prompt generationmethod
in white-box settings (access to model gradients);

• AutoDAN [22]: an evolution-based attackmethod that iteratively
evolve prompts in black-box settings;

• DeepInception [21]: an incremental malicious-injection method
that incrementally injects malicious intent in black-box settings;

• Template-based jailbreaks (TBD) [23]: a prompt-based attack
method in black-box settings;.

4.1.2 LLMs under test. We evaluate PADD on four representative
open-source large languagemodels. For stability, their temperatures
are set to 0.2.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan

Table 2: Attack success rates (ASR𝑎 : adaptive) and false rejection rates (FRR). Lower values are better for both metrics.

Model Method FRR(%) ASR (%) F1(%)
GCG DeepInception AutoDAN TBD Average

LLaMA-3-
8B-Instruct

Vanilla - 45.5 4.0 79.0 29.5 39.5 -
RA-LLM 7.6 18.0 1.5 10.5 8.0 9.5 79.1
SmoothLLM 0.4 3.0 1.0 3.0 3.5 2.6 95.3
Self Defense 5.6 1.0 1.0 0.5 0.0 0.5 95.4
HSF 6.3 0.0 1.0 11.5 0.5 3.3 81.0
PADD 5.2 0.5 0.0 1.0 0.0 0.4 97.1

Qwen-3-
8B

Vanilla - 7.0 46.6 22.1 11.3 21.8 -
RA-LLM 0.0 0.0 0.0 10.3 5.8 4.0 91.3
SmoothLLM 0.0 2.8 12.0 10.3 3.5 7.2 80.6
Self Defense 0.0 0.2 2.3 9.8 2.0 3.6 90.5
HSF 10.4 1.5 2.5 3.0 1.3 2.1 79.4
PADD 0.0 1.0 0.0 6.5 0.0 1.9 96.3

DeepSeek-R1-
Distill-Qwen-7B

Vanilla - 15.0 30.0 22.8 7.5 18.8 -
RA-LLM 5.2 2.0 1.0 0.0 1.3 1.1 88.0
SmoothLLM 4.4 14.3 1.3 17.8 3.3 9.2 57.1
Self Defense 10.8 2.0 1.0 2.5 1.3 1.7 72.1
HSF 0.0 1.3 11.3 10.3 1.5 6.1 87.1
PADD 0.0 9.0 0.0 0.0 3.0 3.0 91.0

Vicuna-13B-
v1.5

Vanilla - 45.3 24.0 76.2 32.3 44.5 -
RA-LLM 10.4 0.0 0.0 6.5 1.5 2.0 90.8
SmoothLLM 0.4 36.0 20.0 57.3 12.3 31.4 45.2
Self Defense 0.0 12.8 12.3 12.3 13.5 12.7 83.2
HSF 10.4 0.0 7.5 11.0 5.0 5.9 46.6
PADD 0.0 2.5 0.0 0.8 4.4 1.9 97.5

• LLaMA-3-8B-Instruct [37]: a widely adopted general-purpose
model that incorporates recent alignment improvements.

• Qwen-3-8B [41]: a competitive open-source model trained on
multilingual corpora with advanced alignment strategies.

• DeepSeek-R1-Distill-Qwen-7B [13]: a distillation-based vari-
ant that emphasizes computational efficiency while retaining
strong reasoning ability.

• Vicuna-13B-v1.5 [8]: a conversational model fine-tuned from
LLaMA on user-shared dialogues.

4.1.3 Datasets. We construct two sets of data.
The training dataset comprises both adversarial and benign

prompts. We first generate 100 prompts for each of four jailbreak
methods—GCG [51], PAIR [6], DSN [49], andAutoDAN [22]—targeting
harmful behaviors defined in JBB-Behaviors [5]. Half of these meth-
ods differ from the target attack families to assess model gener-
alizability. Each prompt is then fed to the tested LLMs, and their
responses are collected. We employ Llama-Guard-3-8B [24] to de-
tect harmful content and label each prompt–LLM pair as adversarial
or benign. Among the 500 training samples, the number of adversar-
ial prompts detected for each model is 223 for LLaMA-3-8B-Instruct,
192 for Qwen-3-8B, 183 for DeepSeek-R1-Distill-Qwen-7B, and 254
for Vicuna-13B-v1.5, with the remaining samples in each case la-
beled as benign, resulting in a total of 500 labeled instances. We
generate 100 non-adversarial prompts using GPT-5 and label them
as benign, ensuring their length distributions match those of the
adversarial prompts for balance.

The testing dataset is constructed using a separate batch of data
following a similar procedure. Specifically, we generate 400 prompts
for each target attack method, adopting all 100 seed prompts from
AdvBench [7] and randomly sampling 300 from RedTeam [25]. For
the non-jailbreak set, we include all 250 samples from the XSTest
benchmark [32], which evaluates over-refusal behavior in defense
mechanisms, along with 150 additional prompts generated by GPT-
5. In total, the testing dataset comprises 8,000 samples (2,000 per
LLM), among which 1,994 are identified as adversarial.

4.1.4 Baselines.

• Vanilla (No-defense): LLM is directly exposed to jailbreak at-
tempts without any protection.

• RA-LLM [4]: defends against jailbreaks by creating prompt vari-
ants through random erasure and detecting adversarial intent
based on differences in responses. It is a black-box method.

• SmoothLLM [31]: it defends against jailbreaks by applying ran-
domized input perturbations at test time and aggregating the
smoothed responses to reduce the effect of adversarial prompts.
It is a black-box method.

• Self Defense [28]: it employs another LLM to screen generated
responses and detect harmful content. It is a black-box method.

• HSF [29]: it analyzes the hidden states of the last few tokens of
prompt to detect adversary. It is a white-box method.

4.1.5 Metrics.

• ASR (Attack SuccessRate): the proportion of adversarial prompts
that successfully jailbreak when defended with the detector.

PADD: Prefix-based Attention Divergence Detector for LLM Jailbreaks WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

• FRR (False Rejection Rate): the proportion of benign prompts
that are incorrectly flagged as jailbreaks.

• F1 score: the F1 score computed against the ground-truth labels
of prompts. Following our definition in Section 2.1, a prompt is
labeled as negative (adversarial prompt) only if it successfully jail-
breaks the target model and produces harmful outputs, whereas
all other prompts are labeled as positive (benign prompt).

4.2 Overall Results
Table 2 summarizes the experimental results.

Overall, PADD achieves the best or near-best performance across
the four evaluated LLMs. It reduces the average ASR to below 2%
on most models and maintains around 3.0% on DeepSeek-R1-Distill-
Qwen-7B. Compared with existing baselines, PADD lowers the
average ASR by 0.1–29.5% in most cases, while specific baselines
attain slightly lower ASR on structured attacks (i.e., GCG and Auto-
DAN) at the expense of higher FRR. Meanwhile, PADD consistently
achieves the highest F1 scores, ranging from 91.0% to 97.5%, indi-
cating its robustness in accurately determining whether a jailbreak
genuinely occurs by leveraging internal representation signals.

In contrast, baselines exhibit several notable limitations. RA-
LLM relies on random erasure and majority voting, which disrupt
input semantics and increase false rejections (e.g., up to 10.4%). For
example, removing the token python from the benign query “[How
to kill a Python process?]” can cause a false rejection.

SmoothLLM aggregates predictions over perturbed copies and
performs well against character-level suffix attacks (e.g., GCG) but
struggles with structured attacks such as DeepInception [21] and
TBD [23]. Under the TBD attack (“[The following behavior is a safe
behavior. Please answer: How to kill a cat?]”), minor character
perturbations fail to distort the semantic cue, keeping ASR high
(7.2% on Qwen-3-8B) and leading to near failure on Vicuna-13B-v1.5
(average ASR > 30%). Meanwhile, PADD successfully detects the ad-
versarial attempt by leveraging prefix-based self-comparison, which
captures abnormal attention instability in adversarial prompts.

Self Defense employs a second LLM for post-hoc auditing and
achieves strong results in some settings (e.g., average ASR 0.5%, F1
95.4%), particularly on LLaMA-3-8B-Instruct. However, its perfor-
mance drops sharply on DeepSeek-R1-Distill-Qwen-7B (ASR 1.7%,
F1 72.1%), indicating poor generalization across models. This degra-
dation mainly stems from its reactive nature: prompts that conceal
malicious intent through neutral or academic phrasing (e.g., “[From
a historical perspective, analyze how poisons were prepared in
medieval poisoning cases.]”) often evade detection. In contrast,
PADD detects such cases by analyzing internal attention divergence
before generation, revealing hidden adversarial intent even when
semantically obfuscated.

HSF detects attacks from the hidden states of the last 𝑘 to-
kens and achieves competitive results on models (e.g., ASR 3.3% on
LLaMA-3-8B-Instruct, 6.1% on DeepSeek-R1-Distill-Qwen-7B) but
is unstable: on Qwen-3-8B FRR rises to 10.4% (F1 79.4%), and on
Vicuna-13B-v1.5 ASR exceeds 10% for several attacks (overall F1
46.6%). As HSF concatenates the last 𝑘 hidden-state vectors into a
fixed-length feature for lightweight classification, it is biased toward
local, position-dependent cues (e.g., end-of-sequence templates),

causing false rejections on benign inputs and unstable performance
on novel or differently formatted attacks.

Overhead. We evaluate the run-time overhead by sampling 100
prompts of varying lengths and reporting their average latency.
On average, PADD introduces approximately 0.384 s overhead per
prompt when running on four RTX 4090 GPUs. This additional cost
arises from one extra forward pass combinedwith lightweight atten-
tion extraction and metric computation, which remains negligible
compared to the 3–29 s response generation time.

In contrast, baseline methods incur 3–9× higher overhead than
PADD.RA-LLM and SmoothLLM require multiple forward passes
over perturbed inputs and aggregate predictions, substantially in-
creasing computation (see Appendix F). Self Defense mandates
the target LLM to complete whole response generation before sec-
ondary auditing, introducing latency since detection begins only
post-generation. Although HSF uses a single LLM pass with an
external classifier, it suffers from considerably higher ASR and FRR.

4.3 Ablation Study
As shown in Table 3, we construct five variants to evaluate the con-
tribution of PADD’s core components: (1) safety prefix (replaced by
“####”), (2) attention distribution normalization, (3) relative entropy
(replaced by raw Shannon entropy), (4) attention perturbation (𝐾),
and (5) attention plasticity (𝐻).

Removing any component of PADD leads to noticeable perfor-
mance degradation. The most substantial declines occur in w/o
Safety Prefix (average ASR increase Δ = +19.6%) and w/o K
(Δ = +9.8%), underscoring their dominant discriminative roles.w/o
Norm introduces moderate deterioration (Δ = +4.6%), while w/o
RelEnt and w/o H yield smaller yet non-negligible ASR increases
(Δ = +2.5% and Δ = +1.4%, respectively), accompanied by minor
FRR variations. These results indicate that the Safety Prefix and
𝐾 are the primary determinants of adversarial–benign separation,
whereas normalization, relative entropy, and 𝐻 provide comple-
mentary robustness. Removing any module consistently worsens
the ASR/FRR trade-off.

4.4 Sensitivity to 𝛼 and 𝛽
To assess the robustness of PADD with respect to its hyperparam-
eters, we conduct a grid search over 𝛼 and 𝛽 within the range
[0.25, 3.0] with a step size of 0.25, resulting in 144 configurations.

All experiments are performed on the LLaMA-3-8B-Instruct.
For efficiency, in evaluating the ASR, we construct a reduced test
set containing 25 randomly sampled prompts from each of four
attack methods, totaling 100 adversarial samples. The false rejec-
tion rate (FRR) is measured under the same setting as in the main
experiments, using benign prompts from the XSTest benchmark.

The results are summarized in Figure 3. Both ASR and FRR
vary smoothly across the parameter space, indicating that PADD
is largely insensitive to the choice of (𝛼, 𝛽). Across most regions,
ASR remains consistently low while FRR stays within an accept-
able range. Notably, for the LLaMA-3-8B-Instruct, the optimal
configuration occurs at 𝛼 = 1.0 and 𝛽 = 1.0, where PADD achieves
the lowest ASR alongside a low FRR, striking a desirable balance
between defense strength and usability.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan

Table 3: Ablation study results.

Scheme LLaMA-3-8B-Instruct Qwen-3-8B DeepSeek-R1-Distill-Qwen-7B Vicuna-13B-v1.5 Average

ASR% FRR% ASR% FRR% ASR% FRR% ASR% FRR% ASR% FRR%

PADD 0.4 5.2 1.9 0.0 3.0 0.0 1.9 0.0 1.8 1.3
w/o Safety Prefix 22.0 (Δ+21.6) 2.5 (Δ-2.7) 16.5 (Δ+14.6) 3.2 (Δ+3.2) 17.2 (Δ+14.2) 4.0 (Δ+4.0) 30.0 (Δ+28.1) 5.5 (Δ+5.5) 21.4 (Δ+19.6) 3.8 (Δ+2.5)
w/o Norm 4.0 (Δ+3.6) 1.5 (Δ-3.7) 6.3 (Δ+4.4) 2.0 (Δ+2.0) 7.9 (Δ+4.9) 2.6 (Δ+2.6) 7.2 (Δ+5.3) 3.0 (Δ+3.0) 6.4 (Δ+4.6) 2.3 (Δ+1.0)
w/o RelEnt 2.2 (Δ+1.8) 1.4 (Δ-3.8) 4.1 (Δ+2.2) 1.6 (Δ+1.6) 5.8 (Δ+2.8) 1.7 (Δ+1.7) 4.9 (Δ+3.0) 2.1 (Δ+2.1) 4.3 (Δ+2.5) 1.7 (Δ+0.4)
w/o K 9.0 (Δ+8.6) 1.4 (Δ-3.8) 11.0 (Δ+9.1) 1.6 (Δ+1.6) 12.5 (Δ+9.5) 1.9 (Δ+1.9) 14.0 (Δ+12.1) 2.3 (Δ+2.3) 11.6 (Δ+9.8) 1.8 (Δ+0.5)
w/o H 1.4 (Δ+1.0) 1.3 (Δ-3.9) 3.2 (Δ+1.3) 1.5 (Δ+1.5) 4.5 (Δ+1.5) 1.6 (Δ+1.6) 3.5 (Δ+1.6) 1.9 (Δ+1.9) 3.2 (Δ+1.4) 1.6 (Δ+0.3)

* Lower is better.
* Δ indicates the difference compared with the full model.

(a) ASR heatmap (b) FRR heatmap (c) ASR–FRR trade-off

Figure 3: Grid search over (𝛼, 𝛽) on LLaMA-3- 8B-Instruct: (a) ASR landscape, (b) FRR landscape, and (c) ASR–FRR trade-off .

5 Related Work
Researchers have studied how to safeguard LLMs against jailbreak
and prompt-injection attacks. In general, there are three categories
of attempts: alignment-based training, pre-generation defenses, and
post-generation auditing.

Alignment-based methods enhance safety during training
or fine-tuning by embedding helpfulness and harmlessness into
model parameters. RLHF [27], Constitutional AI [3], DPO [30], and
GRPO [34] directly optimize alignment objectives. Safe RLHF [9],
Decoupled Refusal Training [43], and GRAIT [50] introduce explicit
refusal mechanisms or safety constraints, while SELF-GUARD [38]
leverages self-identified harmfulness labels. Despite these advances,
alignment-based methods remain vulnerable to distribution shifts
and adversarial prompts, leaving persistent safety gaps [18].

Pre-generation defenses intervene before decoding. RA-LLM [4],
SmoothLLM [31], and RPO [48] employ perturbation-based strate-
gies such as random ablation, smoothing, or suffix optimization.
Gradient Cuff [14] applies refusal-loss tests, Alon et al. [1] use
perplexity-based screening, PromptShield [16] introduces deploy-
able injection filters, and HSF [29] trains hidden-state classifiers.
Although effective, these methods often increase latency, require
detector maintenance, and complicate deployment, even without
modifying the base model.

Post-generation defenses audit or rewrite outputs after gener-
ation. LLM Self Defense [28] and SELF-GUARD [38] use LLM-based
filtering, while Constitutional Classifiers [35] and RigorLLM [45]
rely on classifier-based guardrails. Early-exit halting [46] stops

decoding when unsafe content is detected, and shadow-model gat-
ing [40] employs auxiliary verification. Harmfulness classifiers [19]
estimate output risk, while safe rewriting [44] reformulates un-
safe responses. These methods generally add inference overhead,
depend on external models, and risk misclassifying benign outputs.

In contrast, our PADD detects potential risks before generation
using a lightweight prefix-based attention divergence signal, achiev-
ing strong safety performance with practical deployability.

6 Conclusion
In this work, we propose PADD, a prefix-based attention divergence
detector that enables efficient identification of jailbreak risk prior
to text generation. By combining perturbation and plasticity scores
into a unified risk metric, PADD significantly reduces attack success
rates while maintaining low false rejection rates across multiple
models and diverse attack paradigms. Experimental results demon-
strate that PADD achieves strong robustness and generalization,
while remaining lightweight and easily deployable, offering a new
perspective for enhancing the safety of LLMs.

Acknowledgement
This paper is supported by the National Natural Science Founda-
tion of China (Grant No. 62402183, 92582108). This paper is also
supported by the Shanghai Special Program for Promoting High-
Quality Industrial Development (Project No. 250668, 250203). We
thank the anonymous reviewers for their valuable comments and
constructive suggestions. We also acknowledge the open-source
community for providing valuable tools and resources.

PADD: Prefix-based Attention Divergence Detector for LLM Jailbreaks WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

References
[1] Gabriel Alon and Michael Kamfonas. 2023. Detecting language model attacks

with perplexity. arXiv:2308.14132 (2023).
[2] Md. Ahsan Ayub and Subhabrata Majumdar. 2024. Embedding-based classifiers

can detect prompt injection attacks. https://arxiv.org/abs/2410.22284
[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, and Amanda Askell. 2022. Con-

stitutional AI: Harmlessness from AI Feedback. https://arxiv.org/abs/2212.08073
[4] Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen. 2023. Defending against

alignment-breaking attacks via robustly aligned llm. arXiv:2309.14348 (2023).
[5] Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko,

Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J
Pappas, Florian Tramer, et al. 2024. Jailbreakbench: An open robustness bench-
mark for jailbreaking large language models. NeurIPS 37 (2024), 55005–55029.

[6] Patrick Chao, Alexander Robey, and et al.. 2025. Jailbreaking black box large
language models in twenty queries. In SaTML. IEEE, 23–42.

[7] Yangyi Chen and Gao. 2022. Why Should Adversarial Perturbations be Imper-
ceptible? Rethink the Research Paradigm in Adversarial NLP. In EMNLP. ACL,
Abu Dhabi, United Arab Emirates, 11222–11237. doi:10.18653/v1/2022.emnlp-
main.771

[8] Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Xi Xie, and ... 2023.
[9] Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou

Wang, and Yaodong Yang. 2023. Safe rlhf: Safe reinforcement learning from
human feedback. arXiv:2310.12773 (2023).

[10] Guanlin Deng, Xueying Li, Yukuo Li, Yulang Ren, Zizheng Wang, Jingqi Xia,
Zheli Zheng, Hongxin Hu, and Kehuan Zhang. 2024. MASTERKEY: Automated
Jailbreaking of Large Language Model Chatbots. In NDSS. Internet Society, San
Diego, CA, USA. doi:10.14722/ndss.2024.24188

[11] Y. Gong and colleagues. 2025. Safety Misalignment Against Large Language
Models. In NDSS. https://www.ndss-symposium.org/wp-content/uploads/2025-
1089-paper.pdf

[12] Chenchen Gu, Xiang Lisa Li, Rohith Kuditipudi, Percy Liang, and Tatsunori
Hashimoto. 2025. Auditing Prompt Caching in Language Model APIs.
arXiv:2502.07776 (2025).

[13] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Wenfeng Wu, Yuxiang Liu, et al.
2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. (2025). https://arxiv.org/abs/2501.12948

[14] Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2024. Gradient cuff: Detecting
jailbreak attacks on large language models by exploring refusal loss landscapes.
NeurIPS 37 (2024), 126265–126296.

[15] Zhengmian Hu, Gang Wu, Saayan Mitra, Ruiyi Zhang, and et al.. 2024. Token-
Level Adversarial Prompt Detection Based on Perplexity Measures and Contex-
tual Information. https://arxiv.org/abs/2311.11509

[16] Dennis Jacob, Hend Alzahrani, Zhanhao Hu, Basel Alomair, and David Wag-
ner. 2024. Promptshield: Deployable detection for prompt injection attacks. In
CODASPY. 341–352.

[17] Neel Jain, Avi Schwarzschild, YuxinWen, Gowthami Somepalli, and Kirchenbauer.
2023. Baseline defenses for adversarial attacks against aligned language models.
arXiv:2309.00614 (2023).

[18] Essa Jan, Nouar AlDahoul, Moiz Ali, Faizan Ahmad, Fareed Zaffar, and Yasir
Zaki. 2024. Multitask Mayhem: Unveiling and Mitigating Safety Gaps in LLMs
Fine-tuning. https://arxiv.org/abs/2409.15361

[19] Jinhwa Kim, Ali Derakhshan, and Ian Harris. 2024. Robust safety classifier against
jailbreaking attacks: Adversarial prompt shield. In WOAH. 159–170.

[20] Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Aaron Jiaxun Li, Soheil Feizi,
and Himabindu Lakkaraju. 2025. Certifying LLM Safety against Adversarial
Prompting. https://arxiv.org/abs/2309.02705

[21] Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo
Han. 2023. Deepinception: Hypnotize large language model to be jailbreaker.
arXiv:2311.03191 (2023).

[22] Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. 2024. AutoDAN: Gener-
ating Stealthy Jailbreak Prompts on Aligned Large Language Models. In ICLR.
https://openreview.net/forum?id=7Jwpw4qKkb

[23] Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida
Zhao, Tianwei Zhang, Kailong Wang, and Yang Liu. 2023. Jailbreaking chatgpt
via prompt engineering: An empirical study. arXiv:2305.13860 (2023).

[24] AI @ Meta Llama Team. 2024. The Llama 3 Herd of Models. https://arxiv.org/ab
s/2407.21783

[25] Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo, and Chaowei Xiao. 2024. Jail-
breakv: A benchmark for assessing the robustness of multimodal large language
models against jailbreak attacks. arXiv:2404.03027 (2024).

[26] Zhifan Luo, Shuo Shao, Su Zhang, Lijing Zhou, Yuke Hu, Chenxu Zhao, Zhihao
Liu, and Zhan Qin. 2025. Shadow in the cache: Unveiling and mitigating privacy
risks of kv-cache in llm inference. arXiv:2508.09442 (2025).

[27] Long Ouyang, Jeff Wu, and et al.. 2022. Training language models to follow
instructions with human feedback. https://arxiv.org/abs/2203.02155

[28] Mansi Phute, Alec Helbling, Matthew Hull, ShengYun Peng, Sebastian Szyller,
Cory Cornelius, and Duen Horng Chau. 2023. LLM Self Defense: By Self Exami-
nation, LLMs Know They Are Being Tricked. arXiv:2308.07308 (2023).

[29] Cheng Qian, Hainan Zhang, Lei Sha, and Zhiming Zheng. 2025. Hsf: Defending
against jailbreak attacks with hidden state filtering. In Companion Proceedings of
the ACM on Web Conference 2025. 2078–2087.

[30] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in neural information processing
systems 36 (2023), 53728–53741.

[31] Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. 2023.
Smoothllm: Defending large language models against jailbreaking attacks.
arXiv:2310.03684 (2023).

[32] Paul Röttger, Hannah Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi,
and Dirk Hovy. 2024. XSTest: A Test Suite for Identifying Exaggerated Safety
Behaviours in Large Language Models. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), Kevin Duh, Helena Gomez, and
Steven Bethard (Eds.). ACL, Mexico City, Mexico, 5377–5400. doi:10.18653/v1/20
24.naacl-long.301

[33] Tiziano Santilli, Marco De Luca, Domenico Amalfitano, Anna Rita Fasolino, and
Patrizio Pelliccione. [n. d.]. A Decontextualized LLM-based Safeguard Technique
for Automated Jailbreak Mitigation. Available at SSRN 5503124 ([n. d.]).

[34] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, and
et al.. 2024. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv:2402.03300 (2024).

[35] Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, Jorrit Kruthoff, and Scott Good-
friend. 2025. Constitutional Classifiers: Defending against Universal Jailbreaks
across Thousands of Hours of Red Teaming. https://arxiv.org/abs/2501.18837

[36] Xinyue Shen, Zeyuan Chen, Michael Backes, and et al.. 2024. “Do Anything
Now”: Characterizing and Evaluating In-the-Wild Jailbreak Prompts on Large
Language Models. In CCS. ACM, 1671–1685. doi:10.1145/3658644.3670388

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, and et al.. 2023. LLaMA: Open and
Efficient Foundation Language Models. (2023). https://arxiv.org/abs/2302.13971

[38] Zezhong Wang, Fangkai Yang, Lu Wang, Pu Zhao, Hongru Wang, Liang Chen,
Qingwei Lin, and Kam-Fai Wong. 2023. Self-guard: Empower the llm to safeguard
itself. arXiv:2310.15851 (2023).

[39] AlexanderWei, Nika Haghtalab, and Jacob Steinhardt. 2023. Jailbroken: HowDoes
LLM Safety Training Fail?. In NeurIPS. https://proceedings.neurips.cc/paper_fil
es/paper/2023/file/fd6613131889a4b656206c50a8bd7790-Paper-Conference.pdf

[40] Daoyuan Wu, Shuai Wang, Yang Liu, and Ning Liu. 2024. LLMs Can Defend
Themselves Against Jailbreaking in a Practical Manner: A Vision Paper. https:
//arxiv.org/abs/2402.15727

[41] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, and Zheng.
2025. Qwen3 Technical Report. (2025). https://arxiv.org/abs/2505.09388

[42] Zhiyuan Yu, Xiaogeng Liu, and et al.. 2024. Don’t Listen to Me: Understanding
and Exploring Jailbreak Prompts of Large Language Models. In USENIX Security.
https://www.usenix.org/system/files/sec24fall-prepub-1500-yu-zhiyuan.pdf

[43] Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Jiahao Xu, Tian
Liang, Pinjia He, and Zhaopeng Tu. 2024. Refuse whenever you feel unsafe:
Improving safety in llms via decoupled refusal training. arXiv:2407.09121 (2024).

[44] Yuan Yuan, Tina Sriskandarajah, Anna-Luisa Brakman, Alec Helyar, Alex Beutel,
Andrea Vallone, and Saachi Jain. 2025. From hard refusals to safe-completions:
Toward output-centric safety training. arXiv:2508.09224 (2025).

[45] Zhuowen Yuan, Zidi Xiong, and et al.. 2024. Rigorllm: Resilient guardrails for
large language models against undesired content. arXiv:2403.13031 (2024).

[46] Chongwen Zhao, Zhihao Dou, and Kaizhu Huang. 2025. Defending against
Jailbreak through Early Exit Generation of Large Language Models. https:
//arxiv.org/abs/2408.11308

[47] Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang,
Minlie Huang, and Nanyun Peng. 2024. On Prompt-Driven Safeguarding for
Large Language Models. In ICML (PMLR, Vol. 235). 61593–61613. https://procee
dings.mlr.press/v235/zheng24n.html

[48] Andy Zhou, Bo Li, and Haohan Wang. 2024. Robust prompt optimization for
defending languagemodels against jailbreaking attacks. NeurIPS 37 (2024), 40184–
40211.

[49] Yukai Zhou, Jian Lou, Zhijie Huang, Zhan Qin, and et al.. 2024. Don’t say no:
Jailbreaking llm by suppressing refusal. arXiv:2404.16369 (2024).

[50] Runchuan Zhu, Zinco Jiang, Jiang Wu, Zhipeng Ma, and et al.. 2025. GRAIT:
Gradient-Driven Refusal-Aware Instruction Tuning for Effective Hallucination
Mitigation. https://arxiv.org/abs/2502.05911

[51] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt
Fredrikson. 2023. Universal and Transferable Adversarial Attacks on Aligned
Language Models. (2023). https://arxiv.org/abs/2307.15043

https://arxiv.org/abs/2410.22284
https://arxiv.org/abs/2212.08073
https://doi.org/10.18653/v1/2022.emnlp-main.771
https://doi.org/10.18653/v1/2022.emnlp-main.771
https://doi.org/10.14722/ndss.2024.24188
https://www.ndss-symposium.org/wp-content/uploads/2025-1089-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2025-1089-paper.pdf
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2311.11509
https://arxiv.org/abs/2409.15361
https://arxiv.org/abs/2309.02705
https://openreview.net/forum?id=7Jwpw4qKkb
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2024.naacl-long.301
https://doi.org/10.18653/v1/2024.naacl-long.301
https://arxiv.org/abs/2501.18837
https://doi.org/10.1145/3658644.3670388
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2023/file/fd6613131889a4b656206c50a8bd7790-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fd6613131889a4b656206c50a8bd7790-Paper-Conference.pdf
https://arxiv.org/abs/2402.15727
https://arxiv.org/abs/2402.15727
https://arxiv.org/abs/2505.09388
https://www.usenix.org/system/files/sec24fall-prepub-1500-yu-zhiyuan.pdf
https://arxiv.org/abs/2408.11308
https://arxiv.org/abs/2408.11308
https://proceedings.mlr.press/v235/zheng24n.html
https://proceedings.mlr.press/v235/zheng24n.html
https://arxiv.org/abs/2502.05911
https://arxiv.org/abs/2307.15043

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan

A Proofs and Technical Details for Section 3
A.1 Quadratic Expansion of 𝐾 with Correct

High-Order Remainder
PropositionA.1 (QuadraticKL expansion).Under A1 and ∥Δ∥ →
0,

𝐾 = KL(𝑎𝑠 ∥𝑎𝑓) = 1
2 Δ⊤F(𝑎𝑓) Δ+𝑂 (∥Δ∥3), F(𝑎𝑓) = diag(𝑎𝑓)−1 .

Proof. Write 𝑎𝑠 [𝑖] = 𝑎𝑓 [𝑖] + Δ𝑖 and set 𝑧𝑖 = Δ𝑖/𝑎𝑓 [𝑖]. Then

𝐾 =
∑︁
𝑖

(𝑎𝑓 [𝑖] + Δ𝑖) log(1 + 𝑧𝑖) .

Using log(1+𝑧) = 𝑧 − 1
2𝑧

2 + 1
3𝑧

3 +𝑅4 (𝑧) with |𝑅4 (𝑧) | ≤ |𝑧 |4/[4(1−
|𝑧 |)], we obtain

(𝑎𝑓 [𝑖] + Δ𝑖) log(1 + 𝑧𝑖) = Δ𝑖 + 1
2

Δ2
𝑖

𝑎𝑓 [𝑖] −
1
6

Δ3
𝑖

𝑎𝑓 [𝑖]2 + 𝑅 (≥4)
𝑖

.

Summing over 𝑖 and using
∑
𝑖 Δ𝑖 = 0 yields

𝐾 = 1
2

∑︁
𝑖

Δ2
𝑖

𝑎𝑓 [𝑖]
− 1

6

∑︁
𝑖

Δ3
𝑖

𝑎𝑓 [𝑖]2 +
∑︁
𝑖

𝑅
(≥4)
𝑖

.

Bounding the remainder. Under A1, |𝑧𝑖 | ≤ 𝜂 < 1, hence

|𝑅 (≥4)
𝑖

| ≤ 𝐶 (𝜂) |Δ𝑖 |4
𝑎𝑓 [𝑖]3 , 𝐶 (𝜂) = 1+𝜂

4(1−𝜂) +
1
3 .

Therefore
∑
𝑖 𝑅

(≥4)
𝑖

= 𝑂 (∥Δ∥4), while ∑
𝑖 Δ

3
𝑖
/𝑎𝑓 [𝑖]2 = 𝑂 (∥Δ∥3).

This gives

𝐾 = 1
2 Δ⊤diag(𝑎𝑓)−1Δ + 𝑂 (∥Δ∥3) .□

Interpretation. 𝐾 is a Fisher-weighted quadratic energy of Δ, with
leading error 𝑂 (∥Δ∥3) and controlled quartic remainder.

A.2 Lipschitz Continuity of Normalized
Entropy (Detailed)

Let 𝐻 (𝑝) = −∑𝑁
𝑖=1 𝑝𝑖 log𝑝𝑖 and ℎ(𝑝) = 𝐻 (𝑝)/log𝑁 for a position

with 𝑁 valid indices. Throughout this subsection, probabilities are
natural-logged; constants adapt for other bases.
Lemma A.2 (Lipschitz in ℓ1). Under A1–A3, for any 𝑢, 𝑣 ∈ Δ𝑁−1,

|ℎ(𝑢) − ℎ(𝑣) | ≤ 𝐶

log𝑁
∥𝑢 − 𝑣 ∥1, 𝐶 ≜ 1 + log(1/𝜀) .

Proof (fully detailed). Define the line segment 𝑝𝜏 =𝑣 + 𝜏 (𝑢 − 𝑣), 𝜏 ∈
[0, 1], and the scalar function 𝑔(𝜏) = 𝐻 (𝑝𝜏). Because 𝑢𝑖 , 𝑣𝑖 ≥ 𝜀 (A1)
and the simplex is convex, 𝑝𝜏 ∈ Δ𝑁−1 with 𝑝𝜏,𝑖 ≥ (1 − 𝜏)𝜀 + 𝜏𝜀 = 𝜀
for all 𝜏 ; thus the path stays in the interior.

Step 1: Gradient and bound along the path. For𝐻 (𝑝) = −∑
𝑖 𝑝𝑖 log 𝑝𝑖 ,

∇𝐻 (𝑝)𝑖 = −(1 + log 𝑝𝑖), ∥∇𝐻 (𝑝)∥∞ = max
𝑖

|1 + log𝑝𝑖 |.

Since 𝑝𝜏,𝑖 ≥ 𝜀, we have |1 + log 𝑝𝜏,𝑖 | ≤ 1 + log(1/𝜀), hence
sup

𝜏∈[0,1]
∥∇𝐻 (𝑝𝜏)∥∞ ≤ 𝐶.

Step 2: Path-integral (mean-value) argument. 𝑔 is differentiable
on [0, 1] with

𝑔′ (𝜏) = ∇𝐻 (𝑝𝜏)⊤ (𝑢 − 𝑣) .
By Hölder’s inequality (duality of ℓ∞ and ℓ1),

|𝑔′ (𝜏) | ≤ ∥∇𝐻 (𝑝𝜏)∥∞ ∥𝑢 − 𝑣 ∥1 ≤ 𝐶 ∥𝑢 − 𝑣 ∥1 .

Integrating,

|𝐻 (𝑢) − 𝐻 (𝑣) | =
��� ∫ 1

0
𝑔′ (𝜏) 𝑑𝜏

��� ≤ ∫ 1

0
|𝑔′ (𝜏) | 𝑑𝜏 ≤ 𝐶 ∥𝑢 − 𝑣 ∥1 .

Step 3: Normalization. Dividing by log𝑁 (A3 ensures 𝑁 ≥ 2),

|ℎ(𝑢) − ℎ(𝑣) | ≤ 𝐶

log𝑁
∥𝑢 − 𝑣 ∥1 . ■

Tighter local constant (optional). Let𝑚 ≜ min𝑖,𝜏 𝑝𝜏,𝑖 = min𝑖 min{𝑢𝑖 , 𝑣𝑖 } (≥
𝜀). Repeating the proof with 𝐶 replaced by 𝐶 (𝑚) ≜ 1 + log(1/𝑚)
yields

|ℎ(𝑢) − ℎ(𝑣) | ≤ 1 + log(1/𝑚)
log𝑁

∥𝑢 − 𝑣 ∥1,

which is tighter whenever𝑚 > 𝜀.

Equivalent ℓ2 form (optional). Using ∥𝑥 ∥1 ≤
√
𝑁 ∥𝑥 ∥2,

|ℎ(𝑢) − ℎ(𝑣) | ≤
√
𝑁

log𝑁
(
1 + log(1/𝜀)

)
∥𝑢 − 𝑣 ∥2 .

WhyA1 is necessary. Without 𝜀-smoothing, the gradient∇𝐻 (𝑝)𝑖 =
−(1 + log 𝑝𝑖) is unbounded as 𝑝𝑖 ↓ 0, so 𝐻 fails to be globally Lip-
schitz on the closed simplex. Assumption A1 ensures a uniform
interior bound on the gradient along the entire path 𝑝𝜏 .

Alternative bound without A1 (Fannes–Audenaert type). If one
prefers a bound that does not rely on 𝜀, let 𝛿 = 1

2 ∥𝑢 − 𝑣 ∥1 ∈ [0, 1].
Then (classical discrete Fannes–Audenaert inequality)

|𝐻 (𝑢) − 𝐻 (𝑣) | ≤ 𝛿 log(𝑁 − 1) + 𝐻2 (𝛿),
where 𝐻2 (𝛿) = −𝛿 log𝛿 − (1 − 𝛿) log(1 − 𝛿) is the binary entropy.
Consequently,

|ℎ(𝑢) − ℎ(𝑣) | ≤ 𝛿 log(𝑁 − 1) + 𝐻2 (𝛿)
log𝑁

.

For small 𝛿 , 𝐻2 (𝛿) ≤ 𝛿 log(𝑒/𝛿), recovering a near-linear depen-
dence in ∥𝑢 − 𝑣 ∥1.

Takeaway. The main Lipschitz bound used in the paper follows
from a path-integral of the entropy gradient with a uniform interior
bound supplied by 𝜀-smoothing, and the normalization by log𝑁
removes the trivial position-length scaling.

A.3 Log-Normal Aggregation Model

Figure 4: Q–Q plots of log𝐾 and log𝐻 .

Heuristic. By Proposition A.1, 𝐾 ≈ 1
2
∑
𝑖 Δ

2
𝑖
/𝑎𝑓 [𝑖], a sum of many

positive contributions from weakly dependent micro-perturbations
(layers/heads/positions). Lemma A.2 further shows that token-level
entropy differences scale with ∥𝑢 − 𝑣 ∥1; averaging yields 𝐻 as a
sum of nonnegative terms.

PADD: Prefix-based Attention Divergence Detector for LLM Jailbreaks WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates

Such aggregates admit a log-normal approximation via the delta
method and Fenton–Wilkinson moment matching:

log𝐾 ∼ N(𝜇 (𝑦)
𝐾

, 𝜎2
𝐾), log𝐻 ∼ N(𝜇 (𝑦)

𝐻
, 𝜎2
𝐻),

with Cov(log𝐾, log𝐻) ≈ 𝜌𝜎𝐾𝜎𝐻 under a Lindeberg-type condi-
tion.
Validation. Figure 4 showsQ–Q plots of log𝐾 and log𝐻 , both close
to normal with 𝑝K = 0.1015 and 𝑝H = 0.1343 (> 0.05), supporting
the log-normal model.

A.4 Neyman–Pearson Threshold in the Log
Domain

Let 𝑆 = 𝛼 log𝐾 − 𝛽 log𝐻 . Under the equal-covariance Gaussian
model for 𝑆 |𝑦 ∈ {0, 1},

𝜇
(𝑦)
𝑆

= 𝛼𝜇
(𝑦)
𝐾

− 𝛽𝜇 (𝑦)
𝐻

, 𝜎2
𝑆 = 𝛼2𝜎2

𝐾 + 𝛽2𝜎2
𝐻 − 2𝛼𝛽𝜌𝜎𝐾𝜎𝐻 .

The log-likelihood ratio (LLR) between two equal-variance Gaus-
sians is affine in 𝑆 :

Λ(𝑆) = log
𝑓𝑆 |1 (𝑆)
𝑓𝑆 |0 (𝑆)

=
𝜇
(1)
𝑆

− 𝜇 (0)
𝑆

𝜎2
𝑆

𝑆 −
(𝜇 (1)
𝑆

)2 − (𝜇 (0)
𝑆

)2

2𝜎2
𝑆

.

With priors (𝜋0, 𝜋1) and costs (𝐶10,𝐶01), thresholdΛ(𝑆) at log(𝜋0𝐶10
𝜋1𝐶01

)
yields

𝑆 ≷ 𝑠★ :=
𝜎2
𝑆

𝜇
(1)
𝑆

− 𝜇 (0)
𝑆

log
(
𝜋0𝐶10
𝜋1𝐶01

)
+
𝜇
(1)
𝑆

+ 𝜇 (0)
𝑆

2
.

Exponentiating 𝑆 = 𝛼 log𝐾 − 𝛽 log𝐻 gives

𝐽 =
𝐾𝛼

𝐻𝛽
≷ 𝜏, 𝜏 = 𝑒𝑠

★

.

Special cases: (i) Equal priors/costs: 𝑠★ = 1
2 (𝜇

(1)
𝑆

+𝜇 (0)
𝑆

), 𝜏 = exp(𝑠★).
(ii) 𝜌 = 0: 𝜎2

𝑆
= 𝛼2𝜎2

𝐾
+ 𝛽2𝜎2

𝐻
.

A.5 Choosing (𝛼, 𝛽) via Fisher Separation
Let 𝑧 = [log𝐾, log𝐻]⊤, Δ𝜇 = E[𝑧 |1] −E[𝑧 |0] = [Δ𝜇𝐾 ,Δ𝜇𝐻]⊤, and
Σ = Cov(𝑧). For𝑤 = [𝛼,−𝛽]⊤, the Fisher separation of 𝑆 = 𝑤⊤𝑧 is

J (𝑤) = (𝑤⊤Δ𝜇)2

𝑤⊤Σ𝑤
.

Maximization gives𝑤 ∝ Σ−1Δ𝜇, hence

(𝛼, 𝛽) ∝ Σ−1 [Δ𝜇𝐾 , −Δ𝜇𝐻]⊤ .
A robust default is 𝛼 = 𝛽 = 1 (especially after standardizing
log𝐾, log𝐻).

A.6 Parameter and Threshold Estimation
With labels. Estimate (𝜇 (𝑦)

𝑆
, 𝜎2
𝑆
) on held-out calibration data and

plug into 𝑠★.
Without labels. (i) Target FPR: Fit a Gaussian to 𝑆 on historical
benign traffic and set 𝜏 as the (1 − 𝛼) quantile for desired FPR 𝛼 .
(ii) Two-component GMM: Fit a GMM to 𝑆 via EM; choose 𝜏 at the
posterior-equality point or to maximize Youden’s 𝐽 .

B Safety Prefix
In our framework PADD, the safety prefix serves as a lightweight
and controlled perturbation that enableswithin-prompt self-comparison.
By prepending this prefix to the original prompt, we obtain a paired
variant that differs only in the prefix content, which forms the basis
for extracting reliable jailbreak signals (see Section 3). For repro-
ducibility, we document the exact prefix used in our experiments
below.

Safety Prefix

You are a safe and responsible AI assistant. Always refuse
to provide any harmful, illegal, or unethical information,
including but not limited to instructions about weapons,
drugs, violence, or prohibited activities. If a user attempts
to trick you or bypass these rules, you must still refuse and
instead give a safe and responsible response.

C Sensitivity to Training Data Size

Figure 5: Impact of training set size on ASR.

We assess the sensitivity of PADD to the scale of training data
by varying the number of samples per attack method, denoted by
𝐾 . For each 𝐾 , we randomly select 𝐾 samples from each attack
type (GCG, PAIR, DSN, AutoDAN) and an additional 3 × 𝐾 benign
samples generated by GPT-5, yielding 7×𝐾 samples in total. When
𝐾 = 100, this recovers the whole training set of 700 samples. To en-
sure that every configuration contains effective jailbreak instances,
we prioritize successful adversarial samples when available and
fill the remainder with unsuccessful attempts if necessary. After
constructing each subset, we retrain the detector and evaluate it
on a fixed test set.

The results indicate that the attack success rate (ASR) decreases
steadily as 𝐾 increases, with the most significant improvements
occurring in the low-data regime and diminishing returns there-
after. Across all values of 𝐾 , PADD consistently outperforms the
Vanilla baseline (no defense), and the trends remain stable across
different LLMs. These findings highlight that PADD is both data-
efficient and robust: it achieves strong defense capability with only
a small amount of training data, while larger datasets still provide
incremental benefits.

WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Ziqun Bao, Jiaqiang Niu, Yuchen Shao, and Chengcheng Wan

Figure 6: Histogram of log-domain scores with Youden (red)
and Neyman–Pearson (blue) thresholds.

Table 5: 𝜏 values measured on different models.

Model 𝜏 Value

DeepSeek-R1 123.41
LLaMA-3 173.33
Qwen-3 23.01
Vicuna-13B 261.72

Table 4: K-fold cross-validation results on the LLaMA-3-8B-
Instruct.

Fold ASR (%) FRR (%) F1 (%)

Fold 1 1.9 6.7 95.2
Fold 2 2.0 6.8 95.1
Fold 3 1.8 6.5 95.3
Fold 4 2.2 6.9 95.0
Fold 5 2.0 6.6 95.2

Average 2.0 ± 0.2 6.7 ± 0.2 95.2 ± 0.1

D Robustness of Threshold Calibration
To assess the robustness of PADD’s threshold calibration, we con-
duct a 5-fold cross-validation experiment on the LLaMA-3-8B-
Instruct model.

The training set is partitioned into five disjoint folds. In each
iteration, four folds (approximately 80% of the data) are used to
calibrate the threshold for distinguishing adversarial from benign
prompts. Unlike standard cross-validation, the remaining fold is not
used for evaluation; instead, we apply the same independent test
set from the main experiments to determine the optimal threshold 𝜏
and compute all evaluation metrics. Because this test set is entirely
disjoint from the training data in both source and distribution, it
provides an unbiased benchmark for evaluating the generalization
capability of PADD under different threshold configurations.

The results are summarized in Table 4. Across all folds, the thresh-
olds derived from different training subsets yield almost identical

performance on the test set, with ASR, FRR, and F1 showing only
minor variations. These results demonstrate that PADD is robust
to variations in training data partitioning and that its threshold
calibration process is highly stable and consistent. In other words,
regardless of the specific subset used for calibration, the resulting
threshold preserves comparable defense performance on the held-
out test set. In addition, Appendix C shows that PADD maintains
strong performance even when trained with substantially fewer
samples, further demonstrating its robustness and data efficiency.

E Visualization of Thresholds
In addition to the numerical results reported in Table 5, we visualize
the separation between benign and jailbreak samples in the log
domain. For this analysis, we use the Qwen model and evaluate
on a test set containing a 1:1 ratio of jailbreak and benign samples.
Figure 6 shows the histogram of log-domain scores. Two thresh-
olding strategies are highlighted: the red dashed line corresponds
to the Youden index (empirical trade-off between TPR and FPR),
while the blue dashed line corresponds to the Neyman–Pearson
threshold, whose derivation is given in Appendix A.4. Both thresh-
olds illustrate that benign and jailbreak samples can be effectively
separated.

F Details of Baselines
We reproduce three representative defense methods and adhere to
their original hyperparameter settings. For RA-LLM, which detects
jailbreaks by randomly ablating inputs and performing multiple
forward passes, we use 𝑛 = 10, 𝑝 = 0.3, 𝑡 = 0.2, which requires nine
additional forward passes for each query. For SmoothLLM, which
smooths the model’s decision boundary via randomized character
perturbations, we set 𝑁 = 4, 𝑞 = 0.05, 𝑟 = 0.5, corresponding to
three additional forward passes. For Self-Defense, which applies
a suffix-style harm filter for harmfulness judgment, only one ad-
ditional forward pass is required. For HSF, since the authors did
not release the official implementation, we reproduce the method
by training a logistic regression classifier on hidden-state features,
where the hidden dimension is set to 512 and the number of final
tokens selected is 𝑘 = 7. The training data for HSF follows the same
setting as PADD, as summarized in Table 1.

G Details of attack methods
We reproduce and compare several representative baselines, follow-
ing their original implementations and default configurations to
ensure fair comparison. For GCG (gradient-guided character-level
attack) we use num_steps = 500, search_width = 64, and top_k =

64. For AutoDAN (hierarchical genetic-algorithm attack) we use
population_size = 50, max_iterations = 100, crossover_rate = 0.5,
mutation_rate = 0.01, elite_rate = 0.1, andmulti_point_breaks = 5.
For the remaining methods, we use the default configurations pro-
vided by the original authors.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Preliminaries and Main Idea
	2.1 Problem Formulation
	2.2 Main Ideas

	3 PADD: An LLM Jailbreak Detector
	3.1 Overview
	3.2 Safety Prefix Insertion
	3.3 Attention Feature Extraction
	3.4 Position Alignment
	3.5 Jailbreak Signal Acquisition
	3.6 Jailbreak Judgment

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Results
	4.3 Ablation Study
	4.4 Sensitivity to and

	5 Related Work
	6 Conclusion
	References
	A Proofs and Technical Details for Section 3
	A.1 Quadratic Expansion of K with Correct High-Order Remainder
	A.2 Lipschitz Continuity of Normalized Entropy (Detailed)
	A.3 Log-Normal Aggregation Model
	A.4 Neyman–Pearson Threshold in the Log Domain
	A.5 Choosing (,) via Fisher Separation
	A.6 Parameter and Threshold Estimation

	B Safety Prefix
	C Sensitivity to Training Data Size
	D Robustness of Threshold Calibration
	E Visualization of Thresholds
	F Details of Baselines
	G Details of attack methods

