
Comfrey: Mitigating Integration Failures in LLM-enabled
Software at Run-Time

Yuchen Shao§¶, Yuheng Huang†, Jiazhen Zou§, Yuling Shi♦, Long Yang§¶,
Lei Ma†‡, Ting Su§, Chengcheng Wan§¶ ∗

§ East China Normal University, China ¶ Shanghai Innovation Institute ♦ Shanghai Jiao Tong University, China
† The University of Tokyo, Japan ‡ University of Alberta, Canada

{ycshao, jzzou, longyang}@stu.ecnu.edu.cn, {tsu, ccwan}@sei.ecnu.edu.cn
yuhenghuang42@g.ecc.u-tokyo.ac.jp, yuling.shi@sjtu.edu.cn, ma.lei@acm.org

Abstract
Due to the unrestricted outputs of LLMs and strict requirements
of software components, integration failures are widespread in
software that incorporates LLM agents and retrieval-augmented
generation (RAG). Even seemingly correct LLM/RAG responses can
trigger software misbehaviors if they violate these requirements.

In this paper, we conduct an empirical study to understand in-
tegration failures in real-world LLM-enabled applications. Guided
by this study, we present Comfrey [1], a runtime framework that
adapts the LLM agent and RAG responses to meet software re-
quirements, serving as a middle layer between AI and software
components. It automatically detects and resolves potential integra-
tion failures through a three-stage workflow, ensuring component
compatibility. Our evaluation with a variety of open-source applica-
tions demonstrates that Comfrey detects 75.1% and prevents 63.3%
of potential integration failures with 8.4% overhead, significantly
outperforming the baselines.

Keywords
LLM, software integration failure, run-time patching
ACM Reference Format:
Yuchen Shao§¶ , Yuheng Huang†, Jiazhen Zou§, Yuling Shi♦, Long Yang§¶ ,,
Lei Ma†‡, Ting Su§, Chengcheng Wan§¶ . 2026. Comfrey: Mitigating Inte-
gration Failures in LLM-enabled Software at Run-Time. In 2026 IEEE/ACM
48th International Conference on Software Engineering (ICSE ’26), April 12–
18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3744916.3787847

1 Introduction
1.1 Motivation
Large language models (LLMs) offer effective solutions for process-
ing and generating text, code, and other data. With the knowledge
support from RAG (Retrieval-Augmented Generation), LLMs enable
developers to build powerful tools for conversational agents [2–5],
task management [6–8], program synthesis [9–11], and other appli-
cations. Therefore, they have been incorporated as the intelligent
core in many AI software, referred to in this paper as LLM-enabled

∗Chengcheng Wan is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/2026/04
https://doi.org/10.1145/3744916.3787847

Figure 1: Task management application babyagi [6] encoun-
ters format/syntax/repetition errors.

software. While effective, LLM-enabled software often faces inte-
gration failures, where the output of data-driven AI components
(i.e., LLM and RAG) is unaligned with the input specifications of
logic-driven software components.

Integration failures are widespread in LLM-enabled software, as
the LLM produces highly unrestricted outputs while its downstream
software tasks often have strict requirements. The requirements
cover threemajor dimensions [12–14]: format, syntax, and repetition.
Format requirements come from the application scenario and data
processing pipeline, which limit the valid styles of LLM/RAG output.
For example, a voice assistant may expect its input to start with a
certain phrase (e.g., “Hi Siri”).

The syntax requirement arises from general correctness restric-
tions on natural language and general programming languages; and
the repetition requirements come from verbosity control and exe-
cution efficiency which directly affects user experiences. Moreover,
LLMs are non-deterministic and could provide different outputs
across invocations in terms of format, correctness, and coherence.
This further challenges the robust integration of LLM.

To better understand these requirements, consider the task man-
agement application babyagi [6]. As shown in Figure 1, it constructs
a prompt template (Line 1) that defines the output format, specifi-
cally requesting a numbered list of tasks. After invoking the LLM
(Line 2), it extracts the task descriptions and strips the enumera-
tion markers (Line 3) for display and storage. In the next iteration,
babyagi refines these tasks to provide a more actionable plan.

https://doi.org/10.1145/3744916.3787847
https://doi.org/10.1145/3744916.3787847
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3787847


ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shao et al.

This task generation pipeline seems simple, but it reveals the
unalignment between the output of the AI component and the re-
quirements of downstream tasks. In terms of format requirements,
the parsing logic in line 3 strictly requires the tasks to start with
“Task ”, a number, a dot, and a space (e.g., “Task 1. ”). However,
the LLMs wrongly use colons, commas, dashes, or other delimiters
time by time, leading software to neglect the corresponding tasks.
Moreover, LLMs may make syntax mistakes, such as unnecessary
backslashes, which harm task interpretation. In addition, this case
violates the repetition requirements in two aspects: (i) generates
similar and hyper-focused tasks within a round, e.g., “prepare grat-
itude messages” and “write thank-you messages”; and (ii) rewrites
the task list with semantically similar alternatives, e.g., “write per-
sonalized thank you notes” and “prepare gratitude messages”.

While much work [15–18] has studied integration failures in con-
ventional software systems, this problem remains unexplored for
LLM-enabled applications. They do not tackle the integration chal-
lenges brought up by the non-deterministic behavior and complex
data dependencies of LLMs and RAG. Several work [19–21] focuses
on the API usage of AI with categorical outputs, but do not resolve
the integration challenges of free-text outputs. Another line of work
address the quality problems of LLM and RAG, including hallucina-
tions [22, 23], incorrectness [24–27], inefficiency [28–30], context
forgetting [31–33] and output inconsistency [34–36]. In parallel, a
growing body of work explores prompt engineering [37–39] and
instruction tuning[40–42] techniques to improve LLM responses.
They only tackle the problems inside the AI component, but do
not fundamentally resolve integration failures brought up by the
software context. Recently, some work studies applying LLM in
domain-specific tasks, including software engineering [43–46], con-
versational agents [47–49], scientific assistance [50–52], and clinical
decision support [53–55]. However, they each target a specific task
and cannot be applied to general LLM-enabled software.

1.2 Challenges
It would be beneficial to have an adapter that automatically aligns
the output of AI components to the requirements of downstream
components, preventing integration failures in LLM-enabled soft-
ware. However, designing such an adapter has several challenges.

1. Various requirements from application scenarios. Given
the wide spectrum of software implementation and application
scenarios, the LLMs have to meet the dynamic and diverse require-
ments of software context. However, existing LLMs mainly provide
domain-specific and task-oriented fine-tuned versions, which fun-
damentally lack the capability to address concrete software require-
ments, especially the format requirements. Therefore, a flexible
middle layer is required to ensure compatibility.

2. Ambiguous software expectation of LLM/RAG output.
It is inherently hard to precisely specify the behavior of the AI
components [56]. Making things worse, their downstream software
components only have ambiguous descriptions of their expected
inputs. Therefore, it is hard to judge whether the LLM/RAG output
aligns with software context.

3. Non-deterministic behavior of LLM agents. Due to the
probabilistic nature of LLM and their agents, their accuracy de-
scriptions are only statistically reliable. However, to ensure the

correctness of the entire software, we have to determine whether
a concrete output of the AI components would lead to expected
software behavior. Deriving static code patches from LLM statis-
tical information is insufficient in such scenario. Consequently, a
run-time solution is required to tackle integration failures.

1.3 Contribution
In this paper, we first conduct an empirical study to understand
the integration challenges of LLM-enabled software, as well as
the symptoms of integration failures. Specifically, we analyze 50
open-source applications, each executed with 300 tests with human-
labeled oracles.We find that 50.4% of the test inputs result in failures,
and 74.8% of them are semantic ones that do not cause exceptions
or other easy-to-observe symptoms. All failures are caused by im-
proper integration: 52% are caused by violating format require-
ments, 14% syntax, and 34% repetition.

Guided by our study, we propose Comfrey, a run-time framework
that prevents the integration failures in LLM-enabled software.
Serving as a middle layer, Comfrey automatically detects and adapts
the unaligned LLM and RAG outputs to meet software requirements.

The core algorithm of Comfrey follows a three-stage workflow
where each stage tackles one type of error: format, syntax, and
repetition. In each stage, Comfrey first obtains the correspond-
ing requirement information, and then detects and repairs errors
according to their symptoms. This workflow is modularized and
could be easily extended to new software requirements. To tackle
challenge-1&2, Comfrey captures the software requirements of AI
components from software expectations and application scenarios,
utilizing the specifications of surrounding software components
to characterize the expected behavior of AI components. To tackle
challenge-3, Comfrey always attempts to use non-AI solutions to
tackle integration failures and adopts light-weighted AI-based solu-
tions only when necessary, with the aim ofminimizing the overhead
and improving determinism.

We evaluate Comfrey on 100 open-source LLM-enabled appli-
cations that cover four domains, most of which incorporate RAG
components. In our experiments, Comfrey achieves 75.1% recall
and 96.6% precision in failure detection. After repair, the correct
execution rate of the applications improves from 49.6% to 81.5%,
achieving 19.0-64.0% more improvement than baselines with only
8.4% latency overhead.

2 Background
2.1 LLM Agent
LLM agents are autonomous components that employ LLMs to per-
form reasoning, planning, and task execution. To enhance capability,
they dynamically invoke software components and access external
knowledge sources when necessary [57]. Among the wide spectrum
of LLM agents and their applications, there are four representa-
tive and popular types: conversational agents, task management,
program synthesis, and context-based QA [58].

Conversational agents (e.g., chat-langchain [59]) generate coher-
ent and context-aware responses, enabling dialogue-like interac-
tions with users. Task management agents (e.g., babyagi [6]) help
users to plan, prioritize, and execute goals by breaking high-level in-
structions into actionable steps and coordinating across other time



Comfrey: Mitigating Integration Failures in LLM-enabled Software at Run-Time ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Figure 2: A shopping assistant application h2ogpt [62] and
its requirement of LLM agent.

management tools. Program synthesis agents (e.g., LightGPT [60])
enhance developer productivity by synthesizing code snippets or
automating other tasks. Context-based QA systems (e.g., quivr [61])
support high-precision information retrieval and response genera-
tion by dynamically retrieving domain-specific knowledge.

2.2 Retrieval-Augmented Generation
Given the limited internal knowledge of LLM, external knowledge
is dynamically incorporated into prompts to enhance agent capabil-
ities, enabling more accurate, contextually relevant, and evidence-
grounded responses. Consequently, retrieval-augmented generation
(RAG) is proposed to effectively store and retrieve semantically rel-
evant knowledge content in a knowledge base, which is typically
implemented as a vector database. Such knowledge base is usu-
ally constructed from a domain-specific corpus, such as academic
literature, encyclopedia, and agent interaction histories.

The RAG pipeline has three major stages. During the segmenta-
tion stage, source documents are segmented into several chunks.
To ensure RAG effectiveness, each chunk should contain exactly
one knowledge unit, preventing semantic distortion. During the
indexing stage, the chunk is stored in the vector database, indexed
with its corresponding semantic vector obtained through an em-
bedding model. During the retrieval stage, these indices are used
for computing similarity with a given query from the LLM agent, in
order to select the top-k relevant knowledge entries. It is expected
to retrieve all required knowledge and filter out unrelated ones.

2.3 LLM-enabled Software
In LLM-enabled software, the LLM agent cooperates with other
components to form a cohesive workflow, including data processors,
decision algorithms, user interfaces, and other essential modules.
Note that, we classify the LLM-enabled software with the same
category as its core LLM agent.

Figure 2 illustrates a shopping assistant application h2ogpt [62],
using a conversational agent to turn user input text into several
structured action items. The downstream module then employs
regular expression patterns to transform these items into machine-
executable commands. Therefore, it strictly requires the output of
LLM agent to follow the format of “Thought: <reasoning> Action:
<action_info> Action input: <input_info>”. Otherwise, it will simply
neglect its input. Such error is also observable in other applications.

3 Empirical Study
3.1 Empirical Settings
3.1.1 Application selection. We study 50 Python applications that
incorporate LLM agents to realize their core intelligence feature,

Table 1: Statistics of applications in empirical study

Type # of Apps % with RAG Avg LoC Avg Stars Avg Commits
Conversational agent 12 75% 396,324 8,295 1,313
Task management 13 92% 92,689 16,502 1,358
Program synthesis 12 33% 23,629 851 91
Context-based QA 13 100% 99,862 17,856 1,471

covering the four major categories introduced in Section 2. We
adopt their latest versions as of May 28th, 2025. Among these 50
applications, 33 are all the repositories with more than 50 stars
in Hydrangea, a recently published benchmark of LLM-enabled
software [63]. To create a balanced dataset, we additionally adopt 17
applications fromGitHub that have themost stars in their categories
through the same collection strategy and criteria of Hydrangea.

As shown in Table 1, these applications are popular and actively
maintained. On average, they have 130,885 lines of code, 899 com-
mits in the recent 24months, and 9,308 GitHub stars. Three-quarters
of them integrate RAG algorithm to enhance their LLM agents.

For each application, we conduct testing on the entry function
that invokes the LLM agent or RAG component. To ensure fairness
of the comparison, all applications adopt Qwen2.5-32B model [64]
for general tasks, Qwen2.5-Coder model for code-related tasks, and
Qwen3-Embedding-0.6B model for RAG embedding.

3.1.2 Test input generation. We design 300 different test inputs for
each application. All test inputs are selected and adjusted from ex-
isting AI datasets according to the application type. We use GPT-4o
to judge whether each data entry matches the application scenario
and software context, and adjust it if necessary. Two of the authors
then manually review and refine all the tests. This creates 15,000
test cases across 50 applications, and takes 2 person-month effort.

1) Conversational agents. The conversation data are constructed
from a multi-domain dialogue dataset MultiWOZ [65]. To expand
its scenario, GPT-4o is adopted with a task-specific template de-
signed by the authors (e.g., “generate 10 variations of laws and
business domain”). For each dialogue, only the user-side questions
are retained as test inputs.

2) Task management. The task instances are constructed from
Taskmaster-1 [66] dataset, which contains task-oriented dialogues.
Since it only covers 6 scenarios, GPT-4o is adopted to synthesize
10 more scenarios, each with 300 dialogues, following the same
style as the original one. Only the initial states and task goals are
retained as test inputs.

3) Program synthesis. The code generation tasks are evenly se-
lected from 3 code generation datasets: MBPP [67] for algorithmic
reasoning, DS-1000 [68] for data science tasks, and APPS [69] for
competition-level tasks. Only the natural language requirements
are retained as test inputs.

4) Context-based QA. The context-question pairs are obtained
from the NarrativeQA [70] dataset. To extend to real-world docu-
ments, we supplement it with BBC News [71] and arXiv [72], paired
with reasoning questions generated by GPT-4o. The context is in
the form of Word, CSV, and PDF.

We also tweak the tests for some special scenarios, including
extremely short/long test inputs and mixed-programming-language
inputs. For applications that support multi-turn conversations, we
generate test inputs for 10 iterations.



ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shao et al.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Context-based QA

Program synthesis

Task management

Conversational agent

Failure: Format Error
Failure: Syntax Error

Failure: Repetition Error
Failure: Combined-Error

Failure: Exception
Passed Test

Figure 3: Testing results for 50 applications.

3.1.3 Failure Identification. We examine the data-flow and soft-
ware decisions of each application and judge the correctness of
each test. There are three key criteria: (1) data format compliance,
(2) semantic correctness and coherence, and (3) balance between
data simplicity and completeness.

We first leverage GPT-4o to examine the violations of down-
stream task requirements and user expectations, supplementing
with related code and documentation [73]. We also adopt several
heuristics for judgment, including regular-expression-based for-
mat checks and frequency analysis for repetition detection. Next,
we manually verify the judgment result, particularly focusing on
whether the overall software behavior aligns with the intended task
logic and functional specification from the application documenta-
tion. Each test case and its corresponding oracle are cross-validated
by at least two authors.

3.2 Testing Result Summary
Among 15,000 tests across 50 applications, 7,710 fail, with an aver-
age failure rate of 51% and a median of 60%, as shown in Figure 3.

All 50 applications encounter test failures. Task management
applications have the highest failure rate of 60%, as they have
constraints both within and across LLM agent responses. Program
synthesis applications share a similar failure rate of 56%, as they
require the code snippets to be enclosed in the response in a certain
format. In contrast, context-based QA applications have the fewest
failures (38%), as they typically have fewer requirements on the AI
component outputs.

More than 99% of these test failures are semantic failures that do
not cause exceptions or other easy-to-observe symptoms, like the
example in Figure 1. This phenomenon further reflects the difficulty
of detecting integration failures in LLM-enabled applications. This
paper focuses on tackling these semantic failures, which have three
major categories: format, syntax, and repetition. Among the 7,710
failed tests, 4% of them result from the combined effect of errors
from different categories, which are denoted as combined errors.
Despite the small proportion, these combined-error failures happen
in half of the applications, covering all agent types, suggesting
different errors may co-occur in real-world applications and thus
require a systematic solution.

3.3 Type 1: Format Errors
Around half of the failures are caused by LLM/RAG outputs that
fail to conform to the format requirements of the downstream

software components. As these components typically have strict
specifications of their inputs, the violations in format dimension
would impede the parsing and processing of AI component outputs.

3.3.1 Template discrepancy. This is the most common type of for-
mat errors, contributing to about 30% of all failures. In order to
parse the free text output from AI components, conventional soft-
ware components typically expect LLM output to follow a cer-
tain template, in order to enable rule-based string processing (e.g.,
regular-expression patterns).

In the example of Figure 2, h2ogpt requires the output of LLM
agent to strictly follow the template of “Thought: <reasoning> Ac-
tion: <action_info> Action input: <input_info>”, which enables the
regular-expression parsing in the downstream tasks. However, due
to the non-deterministic nature of LLM, the LLM agent often gener-
ates responses not following the template, causing the downstream
component to fail to parse such responses and wrongly terminate
its invocation.

3.3.2 Improper data segmentation. Sometimes, an LLM-enabled
application segments its input data into several fragments (e.g.,
knowledge units and data entries) for analysis. These fragments are
usually the output of the segmentation stage of RAG components.
To maintain semantic coherence and integrity, such segmentation
must align with natural linguistic or semantic boundaries. While
such violation rarely triggers an exception, it degrades data-flow
quality and hurts software functionality. This problem is particu-
larly common in context-based QA applications, where improper
segmentation accounts for roughly one-third of format failures.

LLMChatbot [74] exemplifies this problem through its extreme
segmentation approach. It wrongly segments the text into character-
level and treats each individual token as a knowledge entry. For
instance, the word “quick” is separated into five individual charac-
ters. This prevents the LLM agent from obtaining any meaningful
knowledge, and leads to incorrect responses to user questions.

3.3.3 Incorrect context construction. When the RAG component
retrieves information from a large corpus, careful content filtering is
required for constructing the context of LLM agents. There are two
types of suboptimal constructions: exclusion of relevant content and
inclusion of irrelevant/low-quality content. Besides interfering with
LLM reasoning [75], it may also lead to context window overflow
and truncated responses due to token accumulation. Around 40%
of non-conforming output format failures are related to incorrect
context construction.



Comfrey: Mitigating Integration Failures in LLM-enabled Software at Run-Time ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Figure 4: Syntax-parser misalignment in LightGPT [60].

Take a scientific document management application, paper-
qa [76], as an example. It sets the relevance threshold to 0 when
retrieving documents according to the user’s question, which is
likely to result in much irrelevant content.

3.4 Type 2: Syntax Errors
Unlike format errors, syntax errors are caused by violating the
linguistic or grammar requirements of end-users and downstream
tasks. Even strictly following a response template, LLMs could still
deliver the same semantics with different syntactic constructions,
some of which may not match the application scenario. Moreover,
small syntax errors in LLM responses could cause downstream
tasks to fail to parse their semantics, especially for compilers or
tool-chain scenarios, leading to incorrect software behavior. Syntax
errors contribute to 13% of test failures.

3.4.1 Syntax-parser misalignment. This type of error mainly hap-
pens in LLM agents that invoke compilers or other logic-driven
tools. LLMs are designed for delivering semantics, instead of ful-
filling the grammatical requirements, structural API specification,
or other domain-specific, manually-defined rules. Therefore, a gap
is likely to appear between the LLM-delivered semantics and the
software-parsed information, e.g., generate SQL queries with in-
correct grammar [77]. We classify such errors as syntax-parser
misalignment, which occupies 20% syntax errors.

Figure 4 shows an example from the program synthesis applica-
tion LightGPT. When creating PostgreSQL database tables, it gen-
erates a SQL query containing syntax errors under default values,
resulting in parser rejection.

3.4.2 Inconsistent lexical feature. Beyond software-imposed con-
straints, linguistic specifications introduce additional lexical re-
quirements. Users typically expect consistent language standard
(e.g., varieties of English), language usage consistency (e.g., without
mixed languages), and conventions (e.g., uniform paragraph/list
structures) throughout a session. However, as LLM training corpus
contains lexically diverse samples, LLMs cannot guarantee such
consistency. This type of error accounts for 80% of all syntax errors.

The AI workflow automation platform DB-GPT [78] is a concrete
example. It encounters inconsistent lexical features in 12% tests, in-
cluding alternately using American and British English (“authorize”
and “authorise”) and responding in a different language from user
query. Although these errors are of low frequency, they greatly
hurt user experience once they appear.

3.5 Type 3: Repetition Errors
Repetition errors occur when LLM agents produce superfluous con-
tent beyond the required scope or rephrase existing output without
providing extra information. These errors waste computational

resources, increase latency, and confuse both end-users and down-
stream components. Repetition errors appear in nearly 30% of the
failed tests. In task management applications, which frequently
manage enumeration, they account for over half of test failures.

3.5.1 Redundant software behavior. Sometimes, the LLM agent re-
peats the same action to fetch or compute the content that is already
known, or re-launches a tool with the same parameter. These redun-
dant behaviors significantly reduce the software’s efficiency. Note
that we only record the actions and tools whose outputs are inde-
pendent of the number of their invocations, e.g., fetch the value of
a constant. Around 15% of repetition errors belong to this category.

Take AGiXT [79] as an example. When a user asks for facts (e.g.,
“the area of a certain country”), the application repeatedly invokes
web search tools with the same keywords, nearly doubling the
execution latency.

3.5.2 Redundant semantics. Repetition also happens in the data-
flow, as illustrated in Figure 1. It accounts for 85% repetition failures.
There are three forms: (1) internal redundancy, where a response
contains duplicated sentences or semantically overlapping enu-
merations; (2) external redundancy, where new responses merely
rephrase previous content without substantive changes; and (3)
contextual redundancy, where a response contains verbose content
irrelevant to the software context and application scenario [63].
They are particularly common when the software interacts with
historical conservation data or manages lists.

The LLM agent in Figure 1 generates either semantically equiv-
alent options or reordered duplicates when making plans. This
redundancy not only distracts users during decision-making but
also unnecessarily increases system execution time.

4 Comfrey Design
Based on Section 3, we propose Comfrey, a run-time framework
that prevents the integration failures in LLM-enabled software.

4.1 Overview
As shown in Figure 5, Comfrey serves as the middle layer between
the AI components (i.e., LLM and RAG) and their downstream
software components, automatically detecting and adapting the AI
component outputs that violate the format, syntax, and repetition
requirements. During runtime, Comfrey will be invoked at multiple
code locations, with the workflow in Figure 5 being chainable across
these invocations.

To integrate Comfrey, software developers only need to use its
instrumentation API to automatically insert a Comfrey method
after every invocation of AI component in the application source
code. It also obtains the format, syntax and repetition requirements
through static analysis. At run time, for every AI component output,
Comfrey applies a series of requirement violation checking, utilizing
the symptom patterns summarized in Section 3. Once a violation is
detected, Comfrey converts such output to meet the requirements
of downstream components, while preserving the semantics.

Stage-wise error tackling. The core algorithm of Comfrey fol-
lows a three-stage workflow, starting from resolving format errors
(§4.3), followed by handling syntax errors (§4.4), and finally tack-
ling repetition errors (§4.5). In each stage, Comfrey first obtains the



ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shao et al.

Figure 5: Overview of the run-time framework Comfrey.

corresponding requirement information. It then detects and repairs
each type of errors one by one, as listed in Table 2. We adopt such a
design to minimize the interference between error types, as well as
tackle the failures caused by the combined errors. For error types
that do not interfere with others, we prioritize the one that has
more severe consequences.

Low-overhead design. As a run-time tool, Comfrey is designed
to have low overhead. It always first attempts to use rule-based
techniques that are computationally efficient, and avoids using
computation-intensive techniques such as LLM self-regeneration
and large-scale neural network inference.

It utilizes finite state automata and syntax tree analysis to de-
tect format errors. For syntax errors, it incorporates compilers and
parsers. It also incorporates an iteration-aware termination mecha-
nism to early-exit the application loop that iteratively refines AI
component outputs when repetition errors are detected. Comfrey
utilizes computation-intensive techniques only when necessary.
For example, it invokes a 0.6B-parameter embedding model only
when it suspects the AI component output contains semantically
similar content.

4.2 Obtaining the Requirements
The requirements of AI component outputs come from two sources:
software expectations and application scenarios.

Extracting requirements from software expectations. While speci-
fication is an ideal source, most applications do not provide them.
Instead, we extract requirements from the data processing code
logic of downstream software components through static analysis.
Comfrey first traverses the function call graph and conducts data
flow analysis to identify all code locations where LLM/RAG outputs
are consumed. Note that, it focuses on the branch edges that lead
to the execution path of function’s core functionality, ignoring the
fall-through edges. It then conducts pattern-based static analysis on
these code snippets to obtain the specific requirements for each er-
ror type: output template (§3.3.1), data chunk specifications (§3.3.2),
context construction rules (§3.3.3), and parser syntax (§3.4.1).

Characterizing requirements from application scenario. There are
also requirements from application scenarios, independent of the
implementation. For example, enumerated outputs should avoid
information duplication. Comfrey particularly focuses on 6 scenario
requirements that arise from user expectations and application
scenarios: intact textual elements(§3.3.2), and content relevance
(§3.3.3) of format dimension; consistent lexical features (§3.4.2) of
syntax dimension; and absence of unnecessary software behavior
repetition (§3.5.1), succinct content (§3.5.2), and contextual semantic

redundancy (§3.5.2) of repetition dimension. These requirements
complement software expectations by ensuring outputs meet user
experience standards and application-specific quality criteria.

4.3 Resolving Format Errors
4.3.1 Template discrepancy.

Requirements. The expected templates are obtained from the code
snippet of downstream parsing. There are three major forms: (1)
positional templates that have fixed identifiers and slots for filling
(e.g., Figure 2); and (2) structured-data templates that specify the
formal schema (e.g., JSON and XML); and (3) code-fenced templates
(e.g., Markdown code blocks).

Detection. Comfrey examines whether the AI output satisfies
the expected template using finite state automata (FSA) [80]. If
a violation is detected and the number of missing and extrane-
ous elements (i.e. basic structural components) is smaller than the
threshold 𝜏𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (3 by default), Comfrey reports a format error.
If there are multiple templates in the downstream task, it only
examines the template with the smallest edit distance.

Repair. For positional templates, Comfrey first clusters the identi-
fiers in AI output to those in the template, with respect to string-edit
distances. It then re-orders the identifiers (together with the fol-
lowing slot) to fit the template requirement. For structured-data
templates, Comfrey first refines the structure of AI output to match
the template (e.g., add a missing JSON key), using the minimum
edits of element changes. It then applies type conversions to ele-
ment whose content violate the schema. For code-fenced templates,
Comfrey adds the missing delimiters and code block boundaries, as
well as unifying the language identifier (e.g., python and py).

Consider template in Figure 2 and the LLM output “Action:...
Thought:...”, Comfrey uses FSA to detect an invalid state transfer
from “Action” to “Thought”, and repairs by switching their order.

4.3.2 Improper data segmentation.
Requirements. Comfrey extracts the chunk size constraints and

boundary markers (i.e., sentence terminators and paragraph breaks)
for data segmentation through static analysis on the processing op-
erations in the earlier software components. There is also a scenario-
driven requirement of integrity, where the segmentation should
not break the sentence structure or separate a word into subwords.

Detection. This module is triggered only after the application per-
forms text segmentation operations (e.g., the segmentation stage of
RAG). Comfrey validates whether all the requirements are fulfilled
and reports an error when either of them is violated in any segment.
As the chunk size and boundary marker requirements are naturally
fulfilled, Comfrey focuses on the integrity. For each data segment, it



Comfrey: Mitigating Integration Failures in LLM-enabled Software at Run-Time ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 2: Comfrey’s strategies for detecting and preventing integration failures

Defect Type Defect Section Detection Solution Repair Solution

Format
Template discrepancy §4.3.1 FSA validation with element threshold Element re-ordering; structure refinement; delimiter supplementation
Improper data segmentation §4.3.2 Dictionary validation; syntactic tree analysis Fragment bridging; sliding-window re-segmentation
Incorrect context construction §4.3.3 Two-stage similarity detection Query-based relevance ranking; low-relevance entry removal

Syntax Syntax-parser misalignment §4.4.1 Compiler/parser syntax validation AST refinement with minimal edit distance
Inconsistent lexical features §4.4.2 Language & structure examination Translation; grammar correction; structure standardization

Repetition Redundant software behavior §4.5.1 History examination Invocation bypass
Redundant semantics §4.5.2 Two-stage similarity detection Content de-duplication; loop termination and rollback

refers to a dictionary when validating the integrity of the first and
last words of the segment. It then constructs syntactic trees for the
first and last sentences of the segment, and examines the missing
linguistic elements, including dangling modifiers, incomplete noun
phrases, and transitive verbs without subjects.

Repair. Comfrey tackles the integrity problem by copying the
first/last word or sentence from adjacent segments and concate-
nating them with the fragment (e.g., bridging “comput-” and “er”).
During this process, the chunk size and boundary markers require-
ments might be violated. Once violated, Comfrey merges and re-
splits adjacent segments with a sliding-window strategy, to make
sure that each segment fulfills these requirements.

4.3.3 Incorrect context construction.
How to include all and only relevant information in the LLM

context is one of the fundamental challenges in RAG systems. Al-
though this complex problem extends beyond the scope of our work,
Comfrey utilizes content relevance to identify some of the incorrect
context construction.

Requirements. Comfrey assumes that all components in the LLM
context should have relevant semantic (e.g., sharing the same topics),
which requires the RAG component to output data entries with
high content relevance. This requirement comes from retrieval
requirements of RAG and user expectation of coherent information.

Detection. Comfrey designs a two-stage similarity detection
mechanism on the retrieved data of RAG component. It first com-
putes the similarity score between every pair of data entries using
TF-IDF similarity. If the score of a component pair is smaller than
bottom quartile [81], Comfrey conducts second-round examination
to further confirm the content relevance. Motivated by two recent
work [82, 83], it computes the relevance score as the cosine similar-
ity of sentence embeddings [84] of this pair. It reports an inclusion
of irrelevant content if the similarity score is smaller than 𝜏 = 0.7.
This threshold is determined from empirical study to balance the
precision and recall: lower values (i.e., < 0.6) generate excessive
false positives, while higher values (> 0.8) is likely to miss subtle
redundancy patterns.

Repair. Comfrey tackles irrelevant content with the RAG re-
ranking approaches [85]. When Comfrey identifies a pair of data
entries with low relevance, it removes the one that is less relevant
to the user query, using the similarity score.

4.4 Resolving Syntax Errors
4.4.1 Syntax-parser misalignment.

Requirements. The requirement arises from the parser that is
applied to the output of AI components, including (1) compilers of
a certain language; and (2) rule-based parser logic.

Detection. The detection of syntax-parser misalignment is
straightforward. Comfrey proactively reuses the syntax checking
module of the compiler/parser to validate AI component outputs
before they undergo actual processing by compiler/parser. We focus
on the syntax requirements in the branch edges for function’s core
functionality, ignoring the error-handling and fall-through edges.
If there are multiple parsers/compilers in the downstream tasks,
Comfrey reports an error if all of them are violated.

Repair. While repairing code syntax is a traditional software
engineering problem, we focus on the errors that are common in
LLM scenarios, as introduced in Section 3.4.1. Comfrey transforms
AI outputs and syntax requirements into the AST domain for rule-
based repairing. The high-level idea is to refine the AI outputs to
match the syntax requirement that has the closest edit distance.
Particularly, Comfrey tackles bracket and string literal mismatches,
trailing commas, invalid operators, and incomplete expressions.
Comfrey validates its repair attempt through re-compilation, and
retries up to 3 times. Note that, Comfrey only repairs a subset of
syntax errors that could be solved through automata.

4.4.2 Inconsistent lexical features.
Requirements. Comfrey focuses on the linguistic uniformity of

three features throughout a session: (1) language usage, (2) language
standard (e.g., “authorize” vs. “authorise”), and (3) text structure.
Comfrey establishes the standard using the lexical features of the
first user text input, or the LLM prompt template when no user
input exists.

Detection. For language usage, Comfrey utilizes Unicode script
detection [86] to identify character ranges (e.g., Latin, CJK, Arabic)
and uses n-gram frequency analysis [87] against language models
to detect language switches. Note that, we deactivate the language
usage examination in translations, linguistic discussions, and other
typical multi-lingual scenarios. For the language standard, it refers
to a dictionary to examine whether the phrases belong to the same
standard variety (e.g., American/British English). For text structure,
Comfrey examines the existence of subheadings, lists, and other
structural elements. Comfrey reports an error when any of the
standard is violated.

Repair. Once a violation is detected, Comfrey converts the vio-
lated part to meet standard. For language usage violations, Comfrey
invokes a local translator. For language standard problem, Comfrey
adopts the first repairing suggestion of a grammar checker [88]. For
text structure, Comfrey follows the similar approach as Section 4.3.1
to align bullets, indentations and other basic structures.

4.5 Resolving Repetition Errors
4.5.1 Redundant software behavior.



ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shao et al.

Requirements. It is unnecessary to repeatedly invoke stateless
and deterministic tools with the same input. Therefore, Comfrey
maintains a list of tools and functions that are stateless and deter-
ministic, relying on LLM internal knowledge and heuristics.

Detection. For each code location of LLM agent invocations, Com-
frey maintains a history queue that records the last 𝑁 tool/function
invocations controlled by the agent, their parameters, and cor-
responding outputs (𝑁 is configurable and set to 10 by default).
Once the agent invokes a tool for function, Comfrey searches the
corresponding history queue for any past invocation of the same
tool/function with the same parameter. Once detected, Comfrey
reports a redundant software behavior if this tool/function is state-
less and deterministic. Comfrey ignores those that may produce
different results when the system state changes.

Repair.Comfrey bypasses the redundant tool/function invocation
and uses the corresponding result in the history queue.

4.5.2 Redundant semantics.
Requirements. Comfrey assumes that the same semantic informa-

tion should not be repeatedly delivered. It adopts the same similarity
threshold 𝜏 = 0.7 as §4.3.3, for semantic redundancy detection.

Detection. Comfrey follows the two-stage similarity detection
mechanism of Section 4.3.3 to detect the redundancy. For redundant
semantics, it examines three dimensions: (1) internal redundancy
where two sentences in a response have a high similarity; (2) exter-
nal redundancy where the responses of two iterations have a high
similarity; and (3) contextual redundancy where the LLM prompt
and response have a high similarity. Comfrey reports an error when
any of them are detected.

Repair. For internal redundancy and contextual redundancy,
Comfrey follows the same solution as Section 4.3.3. For external
redundancy, Comfrey terminates the loop and rolls back to the
value of the last iteration.

5 Implementation
We have implemented Comfrey for LangChain [89, 90] and Python
applications, the most popular framework and programming lan-
guage for developing LLM-enabled applications [56]. The core
algorithm of Comfrey is general to various LLM/RAG algorithms
and programming languages, including its static analysis, runtime
monitoring and automated repair solutions. Comfrey can adapt to
other programming languages by incorporating extra static anal-
ysis libraries (e.g., ESLint [91] for JavaScript, SonarQube [92] for
Java), and to different AI frameworks by implementing framework-
specific API adapters.

Comfrey is a runtime Python library that utilizes function deco-
rator [93] as its instrumentation API. To use Comfrey, developers
only need to specify the code scope where Comfrey should take ef-
fect, without changing the software implementation. By default, the
decorator should be applied to all the entry functions that invoke
the LLM agent or RAG component. Comfrey then uses ByteCode
module [94] and Python interpreter [95] infrastructure to insert
detection and repair instructions between LLM/RAG output gener-
ation and downstream consumption.

Comfrey uses Pyan3 [96], Jedi [97], Python AST module [98],
NetworkX [99] and Beniget [100] for static analysis. It uses re
module [101] for regular expressions, NLTK [102] for tokenization

and parsing, ast, and dis modules for syntax validation. It uses
scikit-learn [103] and NumPy [104] for data analysis. It invokes
Qwen3-Embedding-0.6B model through cloud API for semantic
similarity analysis. The parameter settings of Comfrey (e.g., thresh-
olds and weights) follow the guidance of the original literature and
are validated by the tests in empirical study.

All experiments are on amachine with anM3Max CPU (4.05GHz,
16-core), 32MB L2 Cache, 64G RAM, a 2TB SSD, and 1000Mbps
network connection. All LLM inferences are conducted through
cloud APIs.

6 Evaluation
Our evaluation aims to answer the following research questions:
- RQ1 (Detection): How accurate is Comfrey’s failure detection?
- RQ2 (Repair): How effective does Comfrey prevent failures?
- RQ3 (Ablation): How does each component contribute to Comfrey?

6.1 Methodology
6.1.1 Applications. We evaluate Comfrey on 100 open-source LLM-
enabled applications, evenly distributed in application types. It
includes all the 50 applications in our empirical study and 50 ad-
ditional applications collected after the design of Comfrey. The
additional sets are collected from GitHub, using the same method-
ology as Section 3.1.1. The two sets have the same average age
(25 months), similar sizes (130,885 and 151,112 LoC) and popular-
ity (9,308 and 10,831 stars). Section 6.5.1 compares the evaluation
results of these two sets of applications.

6.1.2 Test data. We design a new set of 300 test inputs and their
success/failure ground-truths for each application, following the
same methodology in our empirical study and avoiding overlaps
with the previous set in empirical study. The new test inputs lead to
15,124 failed tests across 100 applications, having similar breakdown
as the previous set: around 51% of them caused by format errors,
12% by syntax errors, 33% by repetition errors, 4% by combined
errors, and 38 are exception/crash-related.

6.1.3 Baselines. As there is no prior work tackling the integra-
tion failures in LLM-enabled software, we design one straw-man
solution and adapt three recent techniques to our scenario.

(1) Retry: It retries LLM/RAG invocation with the same input if
an exception occurs during the software processing the output.

(2) Reflexion [105]: It is a recent work of LLM self-correction,
which asks LLM itself to judge the correctness of its output and
repair the error. As it only focuses on the LLM component, we adapt
it to the software scope by invoking it after each LLM invocation,
providing the general text description of requirements (which is
obtained by Comfrey) and error types.

(3) SmartGear [56]: It is a runtime tool that tackles the integration
failures of traditional ML tasks. We adapt its repairing solutions
for ML tasks with text output (e.g., optical character recognition),
which clusters the AI output to the focal values in path constraints,
with respect to the edit distance.

(4) JSON Schema Prompting [106]: It is a preventive approach
that provides structured output constraints to LLMs during gen-
eration by including JSON schema specifications in the prompt.



Comfrey: Mitigating Integration Failures in LLM-enabled Software at Run-Time ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 3: Result summary across 30,000 testing runs.

Detection Prevention
TP FP Recall Precision Failures Pass Rate

No Tool - - - - 15,124 49.6%
Comfrey 11,356 398 75.1% 96.6% 5,550 81.5%
Retry 38 0 0.3% 100.0% 15,086 49.7%
Reflexion 6,234 3,567 41.2% 63.6% 9,450 68.5%
SmartGear 3,245 1,678 21.5% 65.9% 11,234 62.6%
JSON Schema Prompting 4,446 1,934 29.4% 69.7% 10,678 64.4%
* TP : True Positives; FP : False Positives.

We adapt it by encoding general software requirements as unified
JSON schemas, which are then embedded in prompts.

6.1.4 Repair judgment. Due to the huge cost of manual validation
across all four schemas, we employ GPT-4o to evaluate repair cor-
rectness against ground-truth requirements [107]. The GPT-4o is
provided with the ground-truth, precise software requirements, and
detailed explanations of error types and corresponding examples.
We derive confidence scores from the log probabilities, quantifying
LLM’s certainty for each judgment.

To ensure the reliability of our semi-automated labeling process,
we implement a multi-stage quality assurance mechanism. For
low-confidence LLM judgments (i.e., 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 < 0.8), we use
the human judgment instead. Two authors independently make
decisions, and have disagreements on approximately 5% of cases
where a third author helps reach consensus. For high-confidence
LLM judgments, we randomly sample 500 cases and only find 4
misjudgments (0.8% error rate), which validates the reliability of
these LLM judgment. To ensure the consistency, we provide detailed
instructions for the LLM and use the lowest temperature settings
to minimize randomness. We also find that judgment inconsistency
rarely happens across repeated invocations, and most of them occur
in low-confidence cases.

Note that, as a generative AI, the LLM has non-deterministic
outputs. Therefore, we store the original LLM/RAG output from
the tested applications of each test to make sure that each schema
repairs the same content.

6.1.5 Metrics. We evaluate in two dimensions.
Detection effectiveness: If a technique identifies a format/syn-

tax/repetition error that leads to software misbehavior in a test,
we refer to it as successfully detecting the failure, no matter the
judgment of error type. We measure precision as the ratio of true
positives (i.e., correct detection) to all reported failures, and recall
as the ratio of true positives to all actual failures.

Repairing effectiveness: If it converts the AI component output
and eliminates the software misbehavior, we refer to it as success-
fully preventing a potential failure. We measure the execution pass
rate after repair.

6.2 Answer to RQ1: Detection
As shown in Table 3, across 30,000 testing runs, Comfrey reports
11,754 errors, with 11,356 true positives (i.e., the corresponding
LLM/RAG output indeed has format/syntax/repetition errors) and
only 398 false positives. The 11,356 true errors detected by Comfrey
constitute 75.1% of all the 15,124 errors that occurred during the
30,000 testing runs.

Comfrey misses one quarter of integration failures due to two
main reasons. Around a third of the false negatives are caused by dy-
namic software requirements, where the downstream components
have requirements that change according to software internal state.
For example, AGiXT [79] requires its task management agent to
produce a template-based text response during user interaction, but
a structured command when a tool invocation is required. As will
be discussed in Section 7, this scenario is not targeted by Comfrey.

For the 398 false positives, the majority are wrong reports of
format (37.2%), syntax (10.0%), and repetition (52.8%) errors. Par-
ticularly, 95.2% of false repetition reports stem from the incorrect
redundant semantics detection, primarily due to the fundamental
challenge of identifying the actual redundancy. First, embedding-
based similarity analysis underperforms on domain-specific con-
tent, where semantically similar phrases serve distinct functional
purposes. Second, it is inherently hard to distinguish necessary
repetition (e.g., recurring technical terms and the required semantic
recurrence) from truly redundant content.

In comparison, the other three baselines either have many false
negatives or false positives, or both.

For detection recall, Retry, Reflexion, SmartGear, and JSON
Schema Prompting only detect 38, 6,234, 3,245, and 4,446 errors
respectively, much less than what Comfrey detects. Retry performs
poorly, as it is only able to detect non-silent failures. Reflexion has
many false negatives, as LLMs are typically less capable of format
validation. It lacks information across LLM invocations, which is
essential for detecting repetition errors. SmartGear is only capable
of tackling the string-related path-constraints, while many integra-
tion failures do not have such property. JSON Schema Prompting
achieves moderate recall (29.4%) but is limited to format-related
constraints and cannot address syntax parsing issues or semantic
repetition errors that occur during runtime integration. Take paper-
qa [76] in Section 3.3.3 as an example. Comfrey successfully detects
the incorrect context construction error by identifying the semantic
incoherence across content. However, Retry misses it as no excep-
tion is raised; Reflexion is only applied after LLM invocation; and
SmartGear fails due to unawareness of coherence problem.

For detection precision, Reflexion, SmartGear, and JSON Schema
Prompting have 8.0×, 3.2×, and 4.9×more false positives than Com-
frey, respectively. Fully relying on LLM self-correction, Reflexion
suffers severe hallucination due to its complete reliance on LLM self-
correction, lacking external information for validation. SmartGear
also has many mis-reports, because it assumes that AI components
often make tiny errors and overly clusters their outputs to path
constraints. JSON Schema Prompting frequently produces false pos-
itives when LLM outputs are semantically correct but deviate from
rigid schema constraints, as it cannot distinguish between function-
ally equivalent formats and actual integration errors.

Summary: Comfrey achieves 75.1% recall and 96.6% precision in
failure detection, significantly outperforming all baselines.

6.3 Answer to RQ2: Repair
As shown in Table 3 and Figure 6, Comfrey improves the execution
correctness rate from 49.6% to 81.5%. It reports 11,754 errors and de-
velops repair strategies for all of them. There are 62 repair attempts



ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shao et al.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Repetition
Errors

Syntax
Errors

Format
Errors

Fixed Detected but Unfixed Undetected

Figure 6: The number of original testing failures that can be
fixed by different Comfrey strategies.

Table 4: Ablation study of Comfrey over each heuristic

#(%) Detected #(%) Prevented
Errors Failures

Comfrey 11,356 (75.1%) 9,574 (63.3%)
(A) Remove resolving format errors 6,234 (41.2%) 3,768 (24.9%)
(B) Remove resolving syntax errors 10,832 (71.6%) 7,419 (49.0%)
(C) Remove resolving repetition errors 8,961 (59.3%) 5,747 (38.0%)
* Total # of original test failures is 15,124 (100%).

(0.2% of tests) that turn out to introduce errors to the correct AI
outputs, of which the majority are caused by incorrect detection of
repetition errors. Meanwhile, the remaining 11,356 repair attempts
target truly problematic AI outputs and successfully repair 9,574
of them. As a net result, Comfrey reduces the number of integra-
tion failures from 15,124 to 5,550, resolving 68.8%/65.1%/53.2% of
format/syntax/repetition errors.

In comparison, Retry only prevents 38 failures. Due to inaccurate
failure detection and unreliable LLM self-correction mechanism,
Reflexion only prevents one-third of the failures, improving execu-
tion correctness by 18.9%. SmartGear successfully repairs 62.4% of
identified true errors, and improves execution correctness by 13.0%.
JSON Schema Prompting prevents 4,446 failures (29.4%), improving
execution correctness from 49.6% to 64.4% (14.8 percentage points
improvement), but its preventive approach cannot address errors
that emerge after LLM response generation. Having many detection
false positives, Reflexion, SmartGear, and JSON Schema Prompting
have 8×, 3×, and 4× more mis-repairs than Comfrey, respectively.

Take the intra-round repetition error in Figure 1 as an example.
Comfrey successfully repairs the repetition errors by removing the
redundant items (similarity=0.87). Meanwhile, Retry and SmartGear
fail to identify this error. While Reflexion notices this error, its
repair attempt unfortunately breaks the item order by rewriting the
entire list. JSON Schema Prompting cannot prevent this error as it
occurs during post-processing, showing the limitation of preventive
approaches for integration failures.

Summary: Comfrey resolves 63.3% of the integration failures,
improving software execution correctness from 49.6% to 81.5%.

6.4 Answer to RQ3: Ablation
We conduct an ablation study to understand the contribution of
each error-tackling module in Comfrey. Table 4 shows the results
when we remove one of the error tackling modules.

The format and repetition error tackling modules contribute
the most to Comfrey. When removing the format(repetition) mod-
ule, Comfrey prevents 60.6% (40.0%) fewer potential failures. This
reflects the fact that format and repetition errors are the most com-
mon reasons for integration failures in LLM-enabled software, as
discussed in Section 3.

The syntax error tackling module also has non-negligible con-
tributions to Comfrey, preventing 22.5% of errors. The reason is
the rareness of syntax errors, which only lead to 12% test failures.
As shown in Figure 6, all modules share similar ratio of failure
detection and prevention.

Summary: All 3 error-tackling modules are effective in preventing
integration failures. The format/syntax/repetition module takes
effect in preventing 60.6%/22.5%/40.0% of the potential failures.

6.5 Discussion
6.5.1 Sensitivity across apps. Comfrey shows similar detection and
prevention capability across two application sets: the 50 applica-
tions used in our empirical study and the 50 additional applications.
For the original set, Comfrey detects 5,724 (75.4%) and prevents
4,803 (63.3%) out of 7,593 testing failures. For the additional set,
Comfrey detects 5,632 (74.8%) and prevents 4,771 (63.4%) out of
7,531 testing failures. Comfrey improves the execution correctness
rate from 49.6% to 81.5% for both sets. This result demonstrates the
generalizability of Comfrey.

6.5.2 Performance overhead. Comfrey always attempts to use light-
weighted techniques (e.g., AST parsing) to tackle integration fail-
ures. The main overhead comes from invoking embedding models
through cloudAPIs, which is invoked in 65.2% tests. Such invocation
typically takes 1.2-2.8 seconds, and Comfrey uses batch processing
to reduce overhead. Across all 30,000 test cases, Comfrey intro-
duces 8.4% performance overhead on average. When there is no
such invocation, the overhead is around 2.1%.

In comparison, Retry has neglectable overhead, due to invocation
in less than 0.3% tests. SmartGear has 1.2% overhead, as it only
involves rule-based string operations. Reflexion requires multiple
LLM API calls for iterative correction and incurs 156.3% overhead
on average across all test cases.

6.5.3 Sensitivity analysis of 𝜏 threshold. We conduct a sensitivity
analysis for the semantic similarity threshold 𝜏 = 0.7 used in both
incorrect context construction detection (§4.3.3) and redundant
semantics detection (§4.5.2).

We evaluate Comfrey’s performance across different 𝜏 values
ranging from 0.5 to 0.9 with 0.1 increments. Performance remains
relatively stable across applications, with average precision varying
between 94.2%-97.8% and recall between 73.9%-76.8%. Due to this
insensitivity, we adopt the median value 𝜏 = 0.7 as the default
setting of Comfrey.

6.5.4 User study. To further evaluate the repairs of Comfrey, we
have conducted a user study with 70 participants who volunteered
to answer a software-quality survey. The survey contains 12 repair
attempts randomly selected from 12 applications, covering format,
syntax, and repetition errors. For each repair attempts, the survey



Comfrey: Mitigating Integration Failures in LLM-enabled Software at Run-Time ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

provides a brief introduction of the application, the original soft-
ware output and the repaired one, and three 5-point Likert scale
questions about: (1) whether they are satisfied with the original
software output, (2) whether they are satisfied with the software
output after repair, and (3) whether the repaired software output pre-
serves the semantics of original one. The participants were invited
through email invitations from 8 academic institutions. Participants
are aged 18–55, with around 60% being male. Most of them have
computer science background, and around 80% have experience
with LLM-enabled applications or AI integration.

As shown in Table 5, most participants aremore satisfiedwith the
repaired software output, with 2.93 points of satisfactory improve-
ment on average. Particularly, 85% participants prefer Comfrey’s
repair attempts in all cases. In terms of semantic preservation, par-
ticipants dominantly agree that Comfrey’s repair attempts do not
change the semantics of original software output.

Table 5: User study results on repair quality evaluation

Evaluation Aspect Error Type Average
Format Syntax Repetition

Original Output Satisfaction 1.85 1.88 1.93 1.89
Repaired Output Satisfaction 4.79 4.84 4.83 4.82
Improvement (Δ) 2.94 2.97 2.90 2.93

Semantic Preservation 4.82 4.84 4.85 4.84

* Scores refer to satisfactory based on 5-point Likert scale evaluation.

7 Thread to Validity
Internal threats to validity. Comfrey assumes the specifications
of AI component output are completely characterized by the down-
stream tasks and application scenarios, which could be incorrect.
The stage-wise error-tackling design of Comfrey assumes that the
failure caused by combined errors has all the corresponding symp-
toms, which is not guaranteed. The static analysis module of Com-
frey cannot capture the requirements that emerge dynamically
during runtime and domain-specific semantic constraints.

External threats to validity. Comfrey is only evaluated with
Python applications that incorporate LLM agents of four represen-
tative types, which may not represent all real-world LLM-enabled
software. The test inputs are created from public AI datasets, which
may be biased and not cover all possible run-time scenarios.

8 Related Work
8.1 LLM-enabled Software
Several work conducts empirical studies of LLM-enabled software
from the perspectives of users [108], developers [109], and plat-
forms [110], emphasizing their rapid growth. Some work [111, 112]
studies user privacy, harmful content, and security vulnerabilities
of LLM-enabled software. Another line of work conducts empirical
study of defects [63, 113] in real-world LLM-enabled applications.

These work aims to understand the current situation and chal-
lenges of LLM-enabled software. They only provide general guide-
lines obtained through manual code inspection. In contrast, Com-
frey proposes an automated approach for preventing the failures.

8.2 AI-related Testing and Fixing
Recent work identifies the intrinsic defects in LLMs, including
hallucinations [114], context understanding challenges [31–33], and
safety vulnerabilities [115–117]. Several benchmarks [118–121] are
proposed for evaluating LLMs in various domains and perspectives
Another line of work proposes automated solutions for testing [43–
45, 122] and fixing [123–127] LLMs. They focus on LLM itself and
do not tackle the system integration challenges.

Some work improves LLM capability on specific tasks through
prompt engineering and output post-processing, including software
engineering [50], scientific discovery [52], and clinical decision
support [53, 55, 128]. These works are task-specific and cannot
tackle the various requirements in LLM-enabled software.

Much work analyzes AI-driven software at the system level,
tackling integration challenges of traditional machine learning
API [56, 129–131], and of deep learning models [132–135]. They
are designed for AI models with pre-defined tasks and categorical
outputs, instead of LLMs. Other research on testing [132, 136–138]
and fixing [139–143] neural networks are orthogonal to our work.

8.3 LLM Output Constraint Approaches
Recently, several approaches aim to constrain and validate LLM
outputs for specific requirements. Constrained decoding [144] in-
spects intermediate inference results to enforce lexical constraints
during text generation. However, it could only tackle format errors
and only applicable to open-source LLMs that are deployed locally.
Additionally, existing work like Guardrails [145] and Outlines [146]
focuses on runtime output validation and constraint enforcement.
They propose novel architectures and programming paradigms,
requiring huge human effort on software refactoring. They are also
limited to format errors. Conversely, Comfrey addresses a wider
range of integration failures with plug-and-play solutions.

9 Conclusion
LLM-enabled software encounters integration challenges when the
output of AI component violates the format, syntax, and repetition
requirements of its downstream software task. In this paper, we
present Comfrey, a runtime framework that prevents integration
failures in LLM-enabled software. Serving as a middle layer be-
tween AI and non-AI components, Comfrey automatically detects
and repairs incompatible AI component outputs via a three-stage
workflow. We evaluate a variety of open-source applications to
demonstrate their effectiveness and efficiency.

Acknowledgement
This paper is supported by National Natural Science Foundation of
China (Grant No. 62402183, 92582108, 62572192), the Chenguang
Program of Shanghai Education Development Foundation and
Shanghai Municipal Education Commission (Grant 23CGA33), the
Shanghai Special Program for Promoting High-Quality Industrial
Development (Project No. 250203, 250668), and Shanghai Trusted
Industry Internet Software Collaborative Innovation Center. This
work is also supported in part by JST CRONOS Grant (No. JP-
MJCS24K8), JSPS KAKENHI Grant (No.JP21H04877, No.JP23H03372,
and No.JP24K02920), Canada CIFAR AI Chairs Program, the Natural
Sciences and Engineering Research Council of Canada.



ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shao et al.

References
[1] Y. Shao, “Comfrey.” https://github.com/ycshao12/Comfrey_2026, 2026.
[2] lencx, “Chatgpt desktop application.” https://github.com/lencx/ChatGPT, 2022.
[3] C. AI, “Chatbox,” 2023.
[4] Reworkd, “Agentgpt: Autonomous ai agents in your browser,” 2023.
[5] josStorer, “chatgptbox,” 2022.
[6] Y. Nakajima, “Babyagi,” 2023.
[7] T. Kipkemboi, “Trip planner agent: Ai-powered travel itinerary generator,” 2023.
[8] DoggoOP, “Personalizedstudyplanner: Ai-powered study planning tool,” 2023.
[9] hkust zhiyao, “Rtl-coder,” 2024.
[10] Damarcreative, “Codesheek: Ai-powered natural-language-to-web-project code

generator,” 2023.
[11] V. Rudloff, “Appifyai: Transform conversations into stunning web apps,” 2023.
[12] D. Huang, T.-S. Nguyen, and et al., “RAP: A metric for balancing repetition and

performance in open-source large language models,” in NAACL, pp. 1479–1496,
2025.

[13] Z. Wang, J. Jiang, and et al., “Verifiable format control for large language model
generations,” in NAACL, pp. 3499–3513, 2025.

[14] H. Wen, Y. Zhu, C. Liu, X. Ren, W. Du, and M. Yan, “Fixing function-level code
generation errors for foundation large language models,” 2025.

[15] F. Hassan, N. Meng, and X. Wang, “Uniloc: Unified fault localization of continu-
ous integration failures,” TOSEM, vol. 32, no. 6, 2023.

[16] F. Hassan, “Tackling build failures in continuous integration,” ASE, pp. 1242–
1245, 2019.

[17] M. Cataldo and J. D. Herbsleb, “Factors leading to integration failures in global
feature-oriented development: an empirical analysis,” ICSE, pp. 161–170, 2011.

[18] M. Santolucito, J. Zhang, E. Zhai, J. Cito, and R. Piskac, “Learning CI configura-
tion correctness for early build feedback,” in SANER’22, pp. 1006–1017, IEEE.

[19] C. Wan, S. Liu, H. Hoffmann, M. Maire, and S. Lu, “A replication of are machine
learning cloud apis used correctly,” in ICSE, 2021.

[20] L. Chen, M. Zaharia, and J. Zou, “Frugalml: how to use ml prediction apis more
accurately and cheaply,” in NeurIPS, 2020.

[21] L. Chen, M. A. Zaharia, and J. Y. Zou, “Efficient online ml api selection for
multi-label classification tasks,” in ICML, 2021.

[22] Q. Huang, X. wen Dong, P. Zhang, et al., “Opera: Alleviating hallucination in
multi-modal large language models via over-trust penalty and retrospection-
allocation,” CVPR, pp. 13418–13427, 2023.

[23] T. Yu, Y. Yao, H. Zhang, T. He, et al., “Rlhf-v: Towards trustworthy mllms via
behavior alignment from fine-grained correctional human feedback,” CVPR,
pp. 13807–13816, 2023.

[24] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li,
D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging llm-as-a-judge
with mt-bench and chatbot arena,” in NeurIPS, 2023.

[25] G. Cui, L. Yuan, N. Ding, G. Yao, B. He, W. Zhu, Y. Ni, G. Xie, R. Xie, Y. Lin,
Z. Liu, and M. Sun, “Ultrafeedback: boosting language models with scaled ai
feedback,” in ICML’24, 2024.

[26] D. Zhang, S. Zhoubian, Z. Hu, Y. Yue, Y. Dong, and J. Tang, “Rest-mcts*: Llm
self-training via process reward guided tree search,” NeurIPS, vol. 37, pp. 64735–
64772, 2024.

[27] A. Setlur, S. Garg, X. Geng, N. Garg, V. Smith, and A. Kumar, “Rl on incorrect
synthetic data scales the efficiency of llm math reasoning by eight-fold,” NeurIPS,
vol. 37, pp. 43000–43031, 2024.

[28] S. Deng, W. Xu, H. Sun, W. Liu, T. Tan, L. Liujianfeng, A. Li, J. Luan, B. Wang,
R. Yan, and S. Shang, “Mobile-bench: An evaluation benchmark for LLM-based
mobile agents,” in ACL, pp. 8813–8831, 2024.

[29] M. Katz, H. Kokel, K. Srinivas, and S. Sohrabi, “Thought of search: Planning
with language models through the lens of efficiency,” in NeurIPS, 2024.

[30] Y. Li, Y. Huang, and et al., “Snapkv: Llm knows what you are looking for before
generation,” NeurIPS, vol. 37, pp. 22947–22970, 2024.

[31] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang,
“Lost in the middle: How language models use long contexts,” TACL, vol. 12,
pp. 157–173, 2024.

[32] Z. Zhang, R. Chen, S. Liu, Z. Yao, O. Ruwase, B. Chen, X. Wu, and Z. Wang,
“Found in the middle: How language models use long contexts better via plug-
and-play positional encoding,” in NeurIPS, vol. 37, 2024.

[33] S. An, Z. Ma, Z. Lin, N. Zheng, and J.-G. Lou, “Make your LLM fully utilize the
context,” in NeurIPS, vol. 37, 2024.

[34] J. Jin, Y. Zhu, Y. Zhou, and Z. Dou, “BIDER: Bridging knowledge inconsistency
for efficient retrieval-augmented LLMs via key supporting evidence,” in ACL
(L.-W. Ku, A. Martins, and V. Srikumar, eds.), pp. 750–761, ACL, 2024.

[35] Y. Liu, X. Peng, X. Zhang, W. Liu, J. Yin, J. Cao, and T. Du, “RA-ISF: Learning to
answer and understand from retrieval augmentation via iterative self-feedback,”
in ACL (L.-W. Ku, A. Martins, and V. Srikumar, eds.), pp. 4730–4749, ACL, 2024.

[36] R. McIlroy-Young, K. Brown, C. Olson, L. Zhang, and C. Dwork, “Order-
independence without fine tuning,” NeurIPS, vol. 37, pp. 72818–72839, 2024.

[37] J. Cao, M. Li, M. Wen, and S.-C. Cheung, “A study on prompt design, advantages
and limitations of chatgpt for deep learning program repair,” ASE, vol. 32, no. 1,

2025.
[38] M. U. Khattak, H. A. Rasheed, M. Maaz, S. H. Khan, and F. S. Khan, “Maple:

Multi-modal prompt learning,” CVPR, pp. 19113–19122, 2022.
[39] S. Roy and A. Etemad, “Consistency-guided prompt learning for vision-language

models,” in ICLR, 2024.
[40] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in NIPS, 2023.
[41] J. Li, D. Li, and et al., “Blip-2: Bootstrapping language-image pre-training with

frozen image encoders and large language models,” in ICML, 2023.
[42] W. Dai, J. Li, and et al., “Instructblip: towards general-purpose vision-language

models with instruction tuning,” in NIPS, 2023.
[43] N. Mündler, M. N. Müller, J. He, and M. T. Vechev, “Swt-bench: Testing and

validating real-world bug-fixes with code agents,” in NeurIPS, 2024.
[44] H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang, Y. Li, Q. Wang, and

T. Xie, “Codereval: A benchmark of pragmatic code generation with generative
pre-trained models,” in ICSE, ACM, 2024.

[45] S. Zhang, H. Zhao, X. Liu, Q. Zheng, Z. Qi, X. Gu, Y. Dong, and J. Tang, “Nat-
uralcodebench: Examining coding performance mismatch on humaneval and
natural user queries,” in ACL, 2024.

[46] J. Zhang, T. Mytkowicz, M. Kaufman, R. Piskac, and S. K. Lahiri, “Using pre-
trained language models to resolve textual and semantic merge conflicts (expe-
rience paper),” in ISSTA (S. Ryu and Y. Smaragdakis, eds.), 2022.

[47] A. Maharana, D.-H. Lee, S. Tulyakov, M. Bansal, F. Barbieri, and Y. Fang, “Evalu-
ating very long-term conversational memory of LLM agents,” in ACL, pp. 13851–
13870, 2024.

[48] Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and
W. B. Dolan, “Dialogpt : Large-scale generative pre-training for conversational
response generation,” in ACL, 2019.

[49] E. M. Smith, M. Williamson, and et al., “Can you put it all together: Evaluating
conversational agentsâĂŹ ability to blend skills,” in ACL, 2020.

[50] E. Chamoun, M. Schlichtkrull, and A. Vlachos, “Automated focused feedback
generation for scientific writing assistance,” in ACL, 2024.

[51] Z. Yang, Z. Zhou, and et al., “MatPlotAgent: Method and evaluation for LLM-
based agentic scientific data visualization,” in ACL, pp. 11789–11804, 2024.

[52] X. Hu, Z. Zhao, S. Wei, Z. Chai, Q. Ma, et al., “Infiagent-dabench: evaluating
agents on data analysis tasks,” in ICML, 2024.

[53] Y. Labrak, A. Bazoge, E. Morin, P.-A. Gourraud, M. Rouvier, and R. Dufour,
“Biomistral: A collection of open-source pretrained large language models for
medical domains,” in ACL, 2024.

[54] X. Huang, L. Shen, J. Liu, F. Shang, and et al., “Towards a multimodal large
language model with pixel-level insight for biomedicine,” in AAAI, 2025.

[55] J. Vladika, P. Schneider, and F. Matthes, “MedREQAL: Examining medical knowl-
edge recall of large language models via question answering,” in ACL (L.-W. Ku,
A. Martins, and V. Srikumar, eds.), pp. 14459–14469, ACL, 2024.

[56] C. Wan, Y. Liu, K. Du, H. Hoffmann, J. Jiang, M. Maire, and S. Lu, “Run-time
prevention of software integration failures of machine learning apis,” OOPSLA,
vol. 7, 2023.

[57] J. Liu, K. Wang, Y. Chen, X. Peng, and et al., “Large language model-based agents
for software engineering: A survey,” arXiv:2409.02977, 2024.

[58] Z. Rasool, S. Barnett, S. Kurniawan, S. Balugo, R. Vasa, C. Chesser, and A. Bahar-
Fuchs, “Evaluating llms on document-based qa: Exact answer selection and
numerical extraction using cogtale dataset,” ArXiv, vol. abs/2311.07878, 2023.

[59] L. AI, “Chat langchain.” https://github.com/langchain-ai/chat-langchain.
[60] D. Patel, “Lightgpt: A lightweight implementation of chatgpt using transformers.”

https://github.com/darshit001/LightGPT, 2024.
[61] QuivrHQ, “Quivr: Your second brain, powered by ai.” https://github.com/

QuivrHQ/quivr, 2023. Accessed: 2024-03-01.
[62] H2O.ai, “h2ogpt: Open-source generative ai platform,” 2023.
[63] Y. Shao, Y. Huang, J. Shen, L. Ma, T. Su, and C.Wan, “Are llms correctly integrated

into software systems?,” in ICSE, 2025.
[64] Q. Team, “Qwen: Large language models by alibaba cloud.” https://github.com/

QwenLM/Qwen, 2023. Accessed: 2025-06-23.
[65] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan,

and M. Gašić, “MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset
for task-oriented dialogue modelling,” in EMNLP, pp. 5016–5026, ACL, 2018.

[66] B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, B. Goodrich, D. Duck-
worth, S. Yavuz, A. Dubey, K.-Y. Kim, and A. Cedilnik, “Taskmaster-1: Toward a
realistic and diverse dialog dataset,” in EMNLP-IJCNLP (K. Inui, J. Jiang, V. Ng,
and X. Wan, eds.), pp. 4516–4525, ACL, 2019.

[67] H. Hüttel, “On program synthesis and large language models,” Commun. ACM,
vol. 68, p. 33âĂŞ35, Dec. 2024.

[68] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, W.-t. Yih, D. Fried,
S. Wang, and T. Yu, “Ds-1000: a natural and reliable benchmark for data science
code generation,” in ICML, JMLR.org, 2023.

[69] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, and et al., “Measuring coding
challenge competence with apps (2021),” arXiv:2105.09938, 2021.

[70] T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and
E. Grefenstette, “The NarrativeQA reading comprehension challenge,” TACL,

https://github.com/lencx/ChatGPT
https://github.com/langchain-ai/chat-langchain
https://github.com/darshit001/LightGPT
https://github.com/QuivrHQ/quivr
https://github.com/QuivrHQ/quivr
https://github.com/QwenLM/Qwen
https://github.com/QwenLM/Qwen


Comfrey: Mitigating Integration Failures in LLM-enabled Software at Run-Time ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

vol. 6, pp. 317–328, 2018.
[71] BBC, “Bbc - homepage,” 2025. Accessed: 2025-06-20.
[72] arXiv, “arxiv e-print archive,” 2025. Accessed: 2025-06-20.
[73] J. Gu, X. Jiang, Z. Shi, H. Tan, X. Zhai, C. Xu, W. Li, Y. Shen, S. Ma, and et al., “A

survey on llm-as-a-judge,” 2025.
[74] Abonia, “Context-based-llmchatbot.” https://github.com/Abonia1/Context-

Based-LLMChatbot, 2023.
[75] S. Zhao, Y. Huang, J. Song, Z. Wang, C. Wan, and L. Ma, “Towards understanding

retrieval accuracy and prompt quality in rag systems,” 2024.
[76] F. House, “Paper-qa: Ask questions about your papers in natural language.”

https://github.com/Future-House/paper-qa, 2023. Accessed: 2025-07-10.
[77] J. Shen, C. Wan, R. Qiao, J. Zou, H. Xu, Y. Shao, Y. Zhang, W. Miao, and G. Pu,

“A study of in-context-learning-based text-to-sql errors,” 2025.
[78] Eosphoros-ai, “Db-gpt: Revolutionizing database interactions with private llm

technology.” https://github.com/eosphoros-ai/DB-GPT, 2023.
[79] J. XT, “Agixt: An artificial general intelligence automation platform.” https:

//github.com/Josh-XT/AGiXT, 2023.
[80] FSA, “Finite state automata - CS field guide,” 2024.
[81] A. Páez and G. Boisjoly, Exploratory Data Analysis, pp. 25–64. Cham: Springer

International Publishing, 2022.
[82] A. Fang, C. Macdonald, I. Ounis, and P. Habel, “Using word embedding to

evaluate the coherence of topics from twitter data,” in SIGIR, (New York, NY,
USA), p. 1057âĂŞ1060, Association for Computing Machinery, 2016.

[83] G. Bedi, F. Carrillo, G. A. Cecchi, and et al., “Automated analysis of free speech
predicts psychosis onset in high-risk youths,” npj Schizophrenia, vol. 1, no. 1,
pp. 1–7, 2015.

[84] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” 2013.

[85] Y. Yu, W. Ping, Z. Liu, B. Wang, J. You, C. Zhang, M. Shoeybi, and B. Catanzaro,
“RankRAG: Unifying context ranking with retrieval-augmented generation in
LLMs,” in NeurIPS, 2024.

[86] Unicode Consortium, “The unicode standard, version 15.1.0,” 2024.
[87] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization,” in Proceed-

ings of SDAIR-94, 3rd annual symposium on document analysis and information
retrieval, pp. 161–175, 1994.

[88] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C. Bryant,
“The conll-2014 shared task on grammatical error correction,” in 18th CoNLL:
Shared Task, pp. 1–14, 2014.

[89] O. Topsakal and T. C. Akinci, “Creating large language model applications
utilizing langchain: A primer on developing llm apps fast,” in ICAENS, vol. 1,
pp. 1050–1056, 2023.

[90] H. Chase, “Langchain: Building applications with llms through composability.”
https://github.com/langchain-ai/langchain, 2022.

[91] ESLint, “Eslint,” 2025.
[92] SonarSource, “Sonarqube,” 2025.
[93] Python, “Python 3.13.0 documentation: Glossary - decorator,” 2025.
[94] V. Stinner, “Bytecode: Python module to generate and modify bytecode.” https:

//pypi.org/project/bytecode/, 2021. Online document.
[95] Python, “The python tutorial: 1.1. invoking the interpreter.” https://docs.python.

org/3/tutorial/interpreter.html, 2024. Accessed: 2025-07-04.
[96] Technologicat, “pyan: Static analyzer for python that generates call graphs.”

https://github.com/Technologicat/pyan, 2024. Accessed: 2025-07-04.
[97] D. Halter, “Jedi: An autocompletion tool for python.” https://github.com/

davidhalter/jedi, 2024. Accessed: 2025-07-04.
[98] Python, ast — Abstract Syntax Trees, 2024. Accessed: 2025-07-04.
[99] A. A. Hagberg, D. A. Schult, P. J. Swart, and N. Developers, “Networkx: Python

software for complex networks.” https://github.com/networkx/networkx, 2024.
[100] S. S. Paille, “Beniget: Static analysis of python bindings using dataflow graphs.”

https://github.com/serge-sans-paille/beniget, 2024.
[101] Python, re — Regular expression operations, 2023. Python 3.12.0 documentation.
[102] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python. O’Reilly

Media, Inc., 2009.
[103] F. Pedregosa, G. Varoquaux, and G. et al., “Scikit-learn: Machine learning in

python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.
[104] N. Developers, “Numpy: The fundamental package for scientific computing

with python.” https://github.com/numpy/numpy, 2024. Accessed: 2025-07-02.
[105] N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and S. Yao, “Reflexion:

language agents with verbal reinforcement learning,” in NeurIPS, 2023.
[106] B. T.Willard and R. Louf, “Efficient guided generation for large languagemodels,”

2023.
[107] A. Kumar, R. Morabito, S. Umbet, J. Kabbara, and A. Emami, “Confidence under

the hood: An investigation into the confidence-probability alignment in large
language models,” in ACL, pp. 315–334, 2024.

[108] Y. Zhao, X. Hou, S. Wang, and H. Wang, “Llm app store analysis: A vision and
roadmap,” TOSEM, vol. 34, no. 5, pp. 1–25, 2025.

[109] X. Chen, C. Gao, C. Chen, G. Zhang, and Y. Liu, “An empirical study on challenges
for llm application developers,” TOSEM, 2025.

[110] K. Hau, S. Hassan, and S. Zhou, “Llms in mobile apps: Practices, challenges, and
opportunities,” in MOBILESoft, pp. 3–14, IEEE, 2025.

[111] T. Liu, Z. Deng, G. Meng, Y. Li, and K. Chen, “Demystifying rce vulnerabilities
in llm-integrated apps,” in CCS, pp. 1716–1730, 2024.

[112] X. Hou, Y. Zhao, and H. Wang, “On the (in) security of llm app stores,” in 2025
IEEE Symposium on Security and Privacy (SP), pp. 317–335, IEEE, 2025.

[113] W. Fan, Y. Ding, L. Ning, and et al., “A survey on rag meeting llms: Towards
retrieval-augmented large language models,” in KDD, ACM, 2024.

[114] L. Huang,W. Yu,W.Ma,W. Zhong, Z. Feng, and et al., “A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open questions,”
ACM Transactions on Information Systems, vol. 43, no. 2, pp. 1–55, 2025.

[115] X. Qi, Y. Zeng, T. Xie, and et al., “Fine-tuning aligned language models compro-
mises safety, even when users do not intend to!,” in ICLR, 2024.

[116] R. Staab,M. Vero,M. Balunovic, andM. Vechev, “Beyondmemorization: Violating
privacy via inference with large language models,” in ICLR, 2024.

[117] Z. Xiang, F. Jiang, Z. Xiong, B. Ramasubramanian, R. Poovendran, and B. Li,
“Badchain: Backdoor chain-of-thought prompting for large language models,” in
NeurIPS, 2024.

[118] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation,” in
NeurIPS, 2023.

[119] Y. Ding, Z. Wang, W. U. Ahmad, et al., “Crosscodeeval: a diverse and multilingual
benchmark for cross-file code completion,” in NeurIPS, 2023.

[120] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer, “Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension,” in ACL, 2017.

[121] B. Wang, W. Chen, and et al., “Decodingtrust: A comprehensive assessment of
trustworthiness in gpt models.,” in NeurIPS, 2023.

[122] Y. Huang, J. Song, and et al., “Active testing of large language model via multi-
stage sampling,” arXiv:2408.03573, 2024.

[123] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large language models to
self-debug,” in ICLR, 2024.

[124] Y. Huang, L. Ma, K. Nishikino, and T. Akazaki, “Risk assessment framework for
code llms via leveraging internal states,” in ESEC/FSE, pp. 1314–1325, 2025.

[125] Y. Shi, S. Wang, C. Wan, and X. Gu, “From code to correctness: Closing the last
mile of code generation with hierarchical debugging,” 2024.

[126] L. Pan, M. Saxon, W. Xu, D. Nathani, X. Wang, and W. Y. Wang, “Automatically
correcting large language models: Surveying the landscape of diverse automated
correction strategies,” TACL, vol. 12, pp. 484–506, 2024.

[127] A. Madaan et al., “Self-refine: Iterative refinement with self-feedback,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[128] J. He, Y. Gong, Z. Lin, C. Wei, Y. Zhao, and K. Chen, “Llm factoscope: Uncovering
llms’ factual discernment through measuring inner states,” in ACL, 2024.

[129] C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu, “Keeper:
Automated testing and fixing of machine learning software,” TOSEM, 2024.

[130] C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire, and S. Lu, “Automated
testing of software that uses machine learning apis,” in ICSE, 2022.

[131] R. Wu, C. Guo, A. Hannun, and L. van der Maaten, “Fixes that fail: self-defeating
improvements in machine-learning systems,” in NeurIPS, 2021.

[132] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu,
J. Zhao, Y. Wang, and X. Zhang, “A survey of testing deep learning systems,”
ACM Computing Surveys, vol. 51, no. 5, pp. 1–38, 2020.

[133] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical study of deep
learning models for vulnerability detection,” in ICSE, 2023.

[134] P. Pan, S. Swaroop, A. Immer, R. Eschenhagen, R. E. Turner, and M. E. Khan,
“Continual deep learning by functional regularisation of memorable past,” in
NeurIPS, Curran Associates Inc., 2020.

[135] G. Jahangirova, N. Humbatova, G. Bavota, V. Riccio, A. Stocco, and P. Tonella,
“Taxonomy of real faults in deep learning systems,” in ICSE, 2020.

[136] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing of deep-neural-
network-driven autonomous cars,” in ICSE, 2018.

[137] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing,” in ICML, 2019.

[138] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie, “Detecting nu-
merical bugs in neural network architectures,” in ESEC/FSE, 2020.

[139] R. Tanno, M. F. Pradier, A. Nori, and Y. Li, “Repairing neural networks by leaving
the right past behind,” in NeurIPS, Curran Associates Inc., 2022.

[140] H. Zhang and W. Chan, “Apricot: A weight-adaptation approach to fixing deep
learning models,” in ASE, 2019.

[141] Z. Li, X. Ma, C. Xu, J. Xu, C. Cao, and et al., “Operational calibration: Debugging
confidence errors for dnns in the field,” in ESEC/FSE, 2020.

[142] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang, “Automatic testing
and improvement of machine translation,” in ICSE, 2020.

[143] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural networks:
Fix patterns and challenges,” in ICSE, 2020.

[144] C. Hokamp and Q. Liu, “Lexically constrained decoding for sequence generation
using grid beam search,” 2017.

[145] G. AI, “Guardrails,” 2025. Accessed: 2025-10-25.
[146] D. AI, “Outlines,” 2025. Accessed: 2025-10-25.

https://github.com/Abonia1/Context-Based-LLMChatbot
https://github.com/Abonia1/Context-Based-LLMChatbot
https://github.com/Future-House/paper-qa
https://github.com/eosphoros-ai/DB-GPT
https://github.com/Josh-XT/AGiXT
https://github.com/Josh-XT/AGiXT
https://github.com/langchain-ai/langchain
https://pypi.org/project/bytecode/
https://pypi.org/project/bytecode/
https://docs.python.org/3/tutorial/interpreter.html
https://docs.python.org/3/tutorial/interpreter.html
https://github.com/Technologicat/pyan
https://github.com/davidhalter/jedi
https://github.com/davidhalter/jedi
https://github.com/networkx/networkx
https://github.com/serge-sans-paille/beniget
https://github.com/numpy/numpy

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contribution

	2 Background
	2.1 LLM Agent
	2.2 Retrieval-Augmented Generation
	2.3 LLM-enabled Software

	3 Empirical Study
	3.1 Empirical Settings
	3.2 Testing Result Summary
	3.3 Type 1: Format Errors
	3.4 Type 2: Syntax Errors
	3.5 Type 3: Repetition Errors

	4 Comfrey Design
	4.1 Overview
	4.2 Obtaining the Requirements
	4.3 Resolving Format Errors
	4.4 Resolving Syntax Errors
	4.5 Resolving Repetition Errors

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Answer to RQ1: Detection
	6.3 Answer to RQ2: Repair
	6.4 Answer to RQ3: Ablation
	6.5 Discussion

	7 Thread to Validity
	8 Related Work
	8.1 LLM-enabled Software
	8.2 AI-related Testing and Fixing
	8.3 LLM Output Constraint Approaches

	9 Conclusion
	References

