
On the Effectiveness of Large Language Models in
Domain-Specific Code Generation

XIAODONG GU, MENG CHEN, YALAN LIN, and YUHAN HU, Shanghai Jiao Tong
University, Shanghai, China
HONGYU ZHANG, Chongqing University, Chongqing, China
CHENGCHENG WAN, East China Normal University, Shanghai, China
ZHAO WEI, YONG XU, and JUHONG WANG, Tencent Inc., Beijing, China

Large language models (LLMs) such as ChatGPT have shown remarkable capabilities in code generation.
Despite significant achievements, they rely on enormous training data to acquire a broad spectrum of open-
domain knowledge. Besides, their evaluation revolves around open-domain benchmarks like HumanEval,
which primarily consist of programming contests. Therefore, it is hard to fully characterize the intricacies
and challenges associated with particular domains (e.g., Web, game, and math). In this article, we conduct
an in-depth study of the LLMs in domain-specific code generation. Our results demonstrate that LLMs
exhibit sub-optimal performance in generating domain-specific code, due to their limited proficiency in
utilizing domain-specific libraries. We further observe that incorporating API knowledge as prompts can
empower LLMs to generate more professional code. Based on these findings, we further investigate how to
effectively incorporate API knowledge into the code generation process. We experiment with three strategies
for incorporating domain knowledge, namely, external knowledge inquirer, chain-of-thought prompting, and
chain-of-thought fine-tuning. We refer to these strategies as a new code generation approach called DomCoder.
Experimental results show that all strategies of DomCoder improve the effectiveness of domain-specific code
generation under certain settings.

CCS Concepts: • Software and its engineering→ Automatic programming;

Additional Key Words and Phrases: large language models, code generation, domain-specific program
generation

ACM Reference format:
Xiaodong Gu, Meng Chen, Yalan Lin, Yuhan Hu, Hongyu Zhang, Chengcheng Wan, Zhao Wei, Yong Xu,
and Juhong Wang. 2025. On the Effectiveness of Large Language Models in Domain-Specific Code Generation.
ACM Trans. Softw. Eng. Methodol. 34, 3, Article 78 (February 2025), 22 pages.
https://doi.org/10.1145/3697012

This research is supported by the National Key R&D Program of China (Grant No. 2023YFB4503802), the National Natural
Science Foundation of China (Grant No. 62102244), and the CCF-Tencent Open Research Fund (RAGR20220129).
Authors’ Contact Information: Xiaodong Gu (corresponding author), Shanghai Jiao Tong University, Shanghai, China; e-mail:
xiaodong.gu@sjtu.edu.cn; Meng Chen, Shanghai Jiao Tong University, Shanghai, China; e-mail: mengchen@sjtu.edu.cn;
Yalan Lin, Shanghai Jiao Tong University, Shanghai, China; e-mail: linyalan@sjtu.edu.cn; Yuhan Hu, Shanghai Jiao Tong Uni-
versity, Shanghai, China; e-mail: suzhengv@sjtu.edu.cn; Hongyu Zhang, Chongqing University, Chongqing, China; e-mail:
hyzhang@cqu.edu.cn; Chengcheng Wan, East China Normal University, Shanghai, China; e-mail: ccwan@sei.ecnu.edu.cn;
Zhao Wei, Tencent Inc., Beijing, China; e-mail: zachwei@tencent.com; Yong Xu, Tencent Inc., Beijing, China; e-mail:
rogerxu@tencent.com; Juhong Wang, Tencent Inc., Beijing, China; e-mail: julietwang@tencent.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2025/2-ART78
https://doi.org/10.1145/3697012

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://orcid.org/0000-0002-0529-6408
https://orcid.org/0009-0000-3358-2965
https://orcid.org/0009-0008-2588-6027
https://orcid.org/0009-0004-3809-3799
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0001-9162-9688
https://orcid.org/0009-0007-4462-3153
https://orcid.org/0009-0004-7488-3704
https://orcid.org/0009-0005-0864-0082
https://doi.org/10.1145/3697012
mailto:permissions@acm.org
https://doi.org/10.1145/3697012
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3697012&domain=pdf&date_stamp=2025-02-23

78:2 X. Gu et al.

1 Introduction
Large language models (LLMs), such as ChatGPT, have demonstrated remarkable proficiency
in various coding tasks [16, 31], including code generation [8, 34], software testing [42], program
repair [7], and code refinement [12, 15].

Despite their remarkable performance, current LLMs for code generation heavily rely on enor-
mous training data to acquire a broad spectrum of open-domain knowledge. Notably, the evaluation
of present LLMs typically revolves around open-domain benchmarks like HumanEval [8] and MBPP
[3], which primarily consist of programming contests (e.g., sorting, dynamic programming), and
while they showcase the capabilities of LLMs in certain aspects, they do not fully represent the
intricacies and challenges associated with real-world code generation scenarios [18, 27].

In this article, we explore a more demanding code generation scenario, focusing on domain-
specific code generation. We define domain-specific code as source code that is tailored specifically
for and can only be applied to a particular domain (e.g., Web and game), typically developed using
domain-specific frameworks (e.g., HTTP, RPC, Unreal). Unlike general-purpose code, domain-
specific code presents distinct challenges due to the scarce availability of code corpora tailored to a
specific domain.This scarcity is not just about the limited amount of training code available; rather, it
highlights the relative rarity of domain-specific training data compared to the extensive pre-training
data that spans multiple domains. As a result, LLMs may be short of expertise in these specific
domains. This scarcity presents a significant obstacle to the task of generating domain-specific
code.

We aim to answer the following major questions: (1) How effective are LLMs such as ChatGPT on
domain-specific code generation? (2) How to effectively prompt LLMs to produce domain-specific
code? In addition, noticed that it is not always straightforward to guide LLMs on domain-specific
code repositories, we also explore the following research question (RQ): (3) Can we enhance
code generation models for a particular domain? Specifically, how to efficiently integrate domain
knowledge into code generation models to enable them to excel in domain-specific code generation
tasks?

To answer these questions, we constructed a domain-specific code dataset that involves two
distinct domains and two programming languages: Web development in Go and game development
in C++. To ensure that the code belonged to the domain we were interested in, we specifically focus
on six prominent industry libraries within the chosen domains, namely, Gin, Prometheus, gRPC-go,
Unreal Engine, Cocos2d-x, and Bgfx. We curate relevant repositories from GitHub, employing a
filtering process that selects code functions utilizing the aforementioned domain libraries.

We first investigate the abilities of several LLMs (ChatGPT [2], PolyCoder [51], and CodeLlama
[39]) in specific domains by comparing their performance on general-purpose code corpora and
domain-specific code corpora. Our analysis reveals that although LLMs have made remarkable
advancements in generating code for open-domain applications, their performance degrades sharply
when applied to specific domains. For ChatGPT, the CodeBLEU score drops by 51.48% on average.
We particularly notice that this is often caused by a lack of domain knowledge, particularly the
misuse of third-party libraries.

We then investigate how to effectively prompt LLMs using domain knowledge. We design several
basic knowledge-based prompts and use them to elicit ChatGPT, the most popular LLM for code
generation. We experimented with different combinations of the basic prompts to study how
different types of prompts influence the performance of domain-specific code generation. We
observe result improvement consistently on all library-specific datasets when using knowledge-
enhanced prompts such as API sequences and docstrings compared to using the plain function
signature prompt.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:3

Based on these findings, we propose a new method called DomCoder for domain-specific code
generation. DomCoder integrates domain knowledge into the code generation process of LLMs
through three strategies, including (1) inquiring an external knowledge GPT (kg-GPT), (2) chain-
of-thought prompting (CoT-PT), and (3) chain-of-thought fine-tuning (CoT-FT). Kg-GPT
trains an external API enquirer based on GPT. Given a function signature, it predicts the API call
sequence and uses it to prompt LLM to complete the function body. In the chain-of-thought
(CoT) strategies, we conceptualize a domain function as a series of sequential states, where each
state corresponds to a sub-activity related to an API call to a third-party library. We simulate
a CoT process during code generation: At each step, the model generates a “knowledge state”
suggesting relevant APIs and a “task state” describing the intended action to be performed. A
knowledge state is predicted based on the history of preceding steps, acting as a guide for the code
generation at the current step and augmenting domain-specific knowledge. The process continues
until the entire programming task is completed. We implement two distinct variants of the CoT
strategies, encompassing both the zero-shot and fine-tuning paradigms. Concerning zero-shot code
generation (CoT-PT), we sequentially predict APIs using kg-GPT and leverage each API prediction
to prompt subsequent states in the sequence. In the fine-tuning setting (CoT-FT), we enrich each
of the primary training functions by injecting pre-processed knowledge states. These enriched
functions are then used to fine-tune LLMs in an end-to-end fashion.

We apply these strategies on the state-of-the-art code LLMs such as PolyCoder [51], StarCoder
[23], and CodeLlama [39] under both zero-shot and fine-tuning paradigms. Our experimental results
show that all strategies of DomCoder improve the effectiveness of domain-specific code generation
under certain settings.

The major contributions of this article are summarized as follows:

—An empirical study on the ability of LLMs for domain-specific code generation.
—An investigation of the effectiveness of various prompts for LLMs to generate domain-specific
code.

—A new approach to integrate domain knowledge into LLMs for code generation.
—A thorough discussion about the implication of our findings and future research directions.

2 Related Work
2.1 Code Generation
Code generation aims to automatically synthesize programs conditioned on programming lan-
guage context and/or natural language descriptions [4, 8, 51], therefore increasing productivity
for developers. Recently, LLMs for code generation have gained significant popularity due to their
impressive performance. The state-of-art models are based on GPT, due to their auto-regressive
nature, which is suitable for generative tasks where the model predicts the next tokens given the
previous context.

General-purpose LLMs exhibit strong code-generation capabilities. These models include GPT-
Neo [5], GPT-J [47], and GPT-NeoX [4]. One representative model is OpenAI’s ChatGPT [2], a
model designed for conversation tasks and supported by a family of backbone models including
gpt-3.5-turbo and GPT-4. It is trained on WebText [36], OpenAI’s internal corpus collected from
Web pages.

There are also many LLMs designed for code-related tasks that are trained on large publicly
available code corpora such as the GitHub repositories. For example, Codex [8] is a GPT language
model aimed at synthesizing Python programs from docstrings. CodeParrot [44], CodeGen [34],
CodeGeeX [56], PolyCoder [51], StarCoder [23], and CodeLlama [39] also belong to this category.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

78:4 X. Gu et al.

Compared to our works, they mainly focus on general-purpose code generation rather than specific
domains.

2.2 Prompting LLMs
With the capability of natural language understanding and generating, LLMs can be prompted to
perform a wide range of downstream tasks, such as question answering (QA) [9], security [55],
and programming [14, 48]. Like fine-tuning, prompting is also a means of transferring pre-trained
models to a certain downstream task [19]. When it comes to large models such as GPT-4, prompting
is often preferred as it does not require a large amount of training resources.

Prompts can be broadly classified into two categories: soft prompts and hard prompts. Soft
prompts are continuous vectors that can be optimized by training. For example, Li and Liang
[24] and Lester et al. [20] explored prompt tuning for learning soft prompts. Hard prompts are
interpretable text tokens that describe the task and may include exemplars. For example, Reif et al.
[37] augmented discrete text prompts to provide more detailed descriptions. Recently, CoT-PT [49]
has emerged as a prevalent way to engage LLMs on specific tasks. CoT-PT has leveraged exemplars
with intermediate steps to enhance the reasoning capabilities of LLMs in complex reasoning tasks.

The use of prompting techniques has also been extended to code generation [10, 11, 25, 48].
Some researchers optimize the prompting patterns. Liu et al. [25] and White et al. [50] investigated
various prompt templates for ChatGPT. Someworks enhance prompting by incorporating contextual
information. For example, Liu et al. [25] added to the prompt optimization template extra context
such as Java Class information. Li et al. [22] introduced test cases and API information to retrieval-
based prompts.

While previous studies have used a function as the unit of prompting, our study focuses on more
fine-grained knowledge integration strategies by injecting CoT prompts into sub-steps during the
code generation process.

2.3 Code Generation with Domain Libraries
Recently, code generation utilizing domain libraries has attracted research attention, and there
have been numerous works focused on incorporating knowledge into code generation models [28,
53]. For example, Zan et al. [53] propose a retrieval-then-coding framework where an API retriever
first identifies useful APIs and an API Coder generates code using these APIs. Shrivastava et al. [41]
introduce domain-specific knowledge in the prompt design process. They present the Repo-Level
Prompt Generator framework, which generates example-specific prompts for LLMs.This framework
incorporates context from entire repositories. Liu et al. [28] introduce CodeGen4Libs, a technique
specifically designed for library-oriented code generation. CodeGen4Libs first generates import
statements and then concrete code. Zan et al. [54] leverage the fact that library-oriented code
snippets often share similar code sketches. They propose a strategy involving a sketcher and a
generator trained on unlabeled data. The sketcher generates library-oriented code sketches, and
then the generator predicts code snippets based on them.

Our work differentiates itself from existing studies by exploring deeper integration of domain
(API) knowledge into the code-generation process. For example, we propose a GPT-based API
recommender that generates API knowledge prompts for LLMs. We also formulate code generation
as a CoT process and integrate APIs in each internal coding state. Besides, we provide an in-depth
analysis of the knowledge gap of LLMs in generating domain code.

2.4 Studies on Code Generation with LLMs
In addition to our research, numerous empirical studies have explored code generation with LLMs
[26, 29, 30, 45]. For instance, Vaithilingam et al. [45] conducted a user study to understand how

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:5

Table 1. Statistics of Domain-Specific Libraries

Library Language Domain Description Popularity # Train functions

Gin Go Web development Web framework featuring Martini-like APIs 69.5k stars 21,161
gRPC-go Go Web development Remote procedure call across data centers 18.3k stars 129,803
Prometheus Go Web development Client library for application instrumentation 9.1k stars 11,708
Unreal Engine C++ Game development Real-time 3D game engine - 184,808
Cocos2d-x C++ Game development Cross-platform 2D game framework 17.2k stars 27,119
Bgfx C++ Game development Cross-platform rendering library 13.1k stars 12,285

programmers use and perceive LLM code generation tools. They found that while Copilot reduced
the need for online searches, it introduced new challenges in code understanding, editing, and
debugging. Mastropaolo et al. [30] evaluated the robustness of existing code-generation LLMs,
discovering that developers using different wordings to describe the same code received varying
recommendations. Liu et al. [26] hypothesized that existing benchmarks, which rely on curated
synthesis problems and test cases, may be insufficient for fully assessing the functional correctness
of generated code. They proposed EvalPlus, a code synthesis evaluation framework designed to
rigorously benchmark the functional correctness of LLM-generated code. More recently, Liu et al.
[29] conducted a systematic empirical assessment of the quality of code generation using ChatGPT,
revealing potential issues and limitations in ChatGPT-based code generation.

Our research stands out from previous studies in both its scope andmethodologies.Whereasmany
related studies focus on evaluating the quality and usability of generated code and challenge existing
benchmarks, our work emphasizes a crucial aspect of code language models: their proficiency in
generating domain-specific code. Specifically, we concentrate on how well LLMs acquire and utilize
domain-specific libraries and their overall effectiveness in applying domain knowledge.

3 Experimental Evaluation
In this article, we conduct an empirical study of LLMs on domain-specific code generation. Specifi-
cally, we aim to address the following RQs:

RQ1: How effective are LLMs in domain-specific code generation?
RQ2 : What are effective methods for prompting LLMs to produce domain-specific code?

3.1 Data Collection
To evaluate LLMs on domain-specific code generation, we collect data from the public repositories
on GitHub that involve certain domains. As the domain is not usually explicitly labeled in GitHub
repositories, we track the domain of each function through the third-party libraries they utilize. We
consider two popular domains in our experiments, includingWeb and game development.The third-
party libraries of these two domains are clear for identification. For each domain, we investigate
three libraries provided by a giant Internet company, voted as the most commonly used in their
domain applications. Table 1 shows the details of all libraries, including the languages, domains,
descriptions, and popularity represented by GitHub Stargazer counts. For Web development, we
chose three libraries in the Go language, including Gin, gRPC-go, and Prometheus. Gin (gin-
gonic/gin) is a Web framework that features a Martini-like API with better performance. gRPC-go
(google.golang.org/grpc) is an implementation of gRPC, a high-performance, general-purpose,
open source RPC framework designed by Google. Prometheus (prometheus/client_golang) is a
client library for instrumenting Go applications. It has two separate parts, one for instrumenting
application code and one for creating clients that talk to the Prometheus HTTP API.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

78:6 X. Gu et al.

For game development, we chose three C++ libraries: Unreal Engine, Cocos2d-x, and Bgfx.
Unreal Engine is a real-time 3D game development engine widely used in the industry. With solid
network support, it can be used to create multi-player online games that require high performance
and low latency. Cocos2d-x is an open source multi-platform C++ framework for building graphical
applications, especially 2D games. It works on platforms including iOS, Android, macOS, Windows,
and Linux. Bgfx is an open source cross-platform rendering library that can be used with graphic
libraries to build game frameworks.

The detailed data collection process is as follows. We first filter all publicly available repositories
with above 50 Stargazer counts by the target language (e.g., Golang) using the GitHub repository
search API.1 Then, for each repository filtered, we use the GitHub code search API to check if it
contains the library name which must be imported, and if so, retrieve all program files that contain
the library name. We extracted and de-duplicated all functions from the collected files, then filtered
out those with an empty function body. We also leave out functions with simple names such as
main or init, as they do not contain sufficient context information about the functionality of the
code. The statistics of our final dataset are shown in Table 1.

3.2 Evaluated Language Models
We investigate three LLMs: ChatGPT [2], CodeLlama [39], and PolyCoder [51]. They are all widely
used for code generation.

ChatGPT [2] is a popular LLM that performs generation tasks in the dialogue format. The model
also has demonstrated superb ability in coding. ChatGPT involves a family of backbone models.
We chose the most widely used version gpt-3.5-turbo to experiment with. The model has around
154B parameters. Since it is not open sourced, we connect to the model through the official API
provided by OpenAI2 once at a time, then retrieve the code segment from its response text.

PolyCoder [51] is a well-established open source model based on GPT-2 and trained on GitHub
code. The model demonstrates competitive performance to GPT-3 counterparts. We use the released
pre-trained checkpoint PolyCoder-7B.3
CodeLlama [39] is the state-of-the-art language model for code generation. CodeLlama is built

upon Llama 2, by further training on code-specific datasets. The model involves four sizes with 7B,
13B, 34B, and 70B parameters, respectively. We use the 7B model, which can be served on a single
GPU while showing efficient and accurate performance on code completion.

For each model, we set the maximum generation length to 256.

3.3 Evaluation Metrics
We did not adopt the widely used pass@k (the passing rate of generated code on test cases) [8]
for evaluation. The rationale behind this choice is rooted in the distinctive nature of the domain-
specific functions we investigate. Unlike programming contests in existing benchmarks [8, 34],
domain-specific functions tend to be notably intricate, often interrelated with multiple functions,
designed for specific platforms, or reliant on a lot of third-party libraries. It is too rigorous to
have all of them executable, even with powerful LLMs. For example, our preliminary experiments
indicate that even ChatGPT achieves a 0% pass rate out of 200 samples when attempting to pass
their test cases. Furthermore, testing them necessitates the labor-intensive task of manually crafting
hundreds of test cases, thoroughly constructing multiple functions, and configuring reliant libraries

1https://docs.github.com/en/rest/search?apiVersion=2022-11-28
2ChatGPT: https://platform.openai.com/docs/api-reference
3PolyCoder: https://huggingface.co/NinedayWang/PolyCoder-2.7B

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://docs.github.com/en/rest/search?apiVersion=2022-11-28
https://platform.openai.com/docs/api-reference
https://huggingface.co/NinedayWang/PolyCoder-2.7B

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:7

Table 2. The Code Generation Performance of LLMs on Open-Domain and Domain-Specific Datasets

General-purpose Code-oriented

Dataset ChatGPT-3.5-154B CodeLlama-7B PolyCoder-2.7B

BLEU CodeBLEU BLEU CodeBLEU BLEU CodeBLEU

Open-domain datasets
HumanEval 39.00 30.05 18.13 17.99 22.22 13.81
CodeSearchNet (Golang) 11.16 25.29 16.14 19.63 15.97 19.56
Domain-specific datasets
Gin 5.81 17.73 8.47 18.07 8.13 17.05
Prometheus 1.75 12.17 1.79 13.13 1.77 12.11
gRPC-go 2.53 12.15 57.61 60.39 55.36 57.52
Unreal Engine 5.22 10.57 0.73 10.21 0.94 9.87
Cocos2d-x 3.71 12.92 16.76 25.87 13.83 23.83
Bgfx 0.86 8.09 0.55 7.72 0.76 7.16

and platforms, which is an impractical endeavor. Given these inherent complexities and limitations,
conducting evaluations based on real executions is infeasible.

Therefore, in our study, we have chosen to utilize other popular metrics such as BLEU and
CodeBLEU, which have also been employed by related works on code generation [21, 28]. BLEU
[35] measures sequence similarity by calculating their n-gram matches. CodeBLEU [38] is a metric
based on BLEU, adjusted for code evaluation, which introduces syntactic and semantic similarities
into comparison. We compute both metrics using the scripts provided by the CodeXGLUE paper.4

3.4 RQ1: Effectiveness of LLMs in Domain-Specific Code Generation
3.4.1 Methodology. In this RQ, we investigate the capabilities of LLMs in specific domains. We

focus on the code completion scenario, wherein an LLM is presented with a function signature as
a prompt, and its objective is to complete the function body. Previous work has indicated that a
good function signature already provides enough information to illustrate its functionality [13].
Another reason for not including Natural Language (NL) requirements in the prompt is that the
domain-specific code we collected contains only a small portion (<5%) of code that contains NL
requirements.

We sampled 500 functions from each library-specific dataset we collected (Section 3.1) for the
completion. We compare the model-generated code against the ground-truth one in the original
function and compute the evaluation metrics.

We compare the quality of LLM-generated code in the domain-specific dataset to that in open-
domain (general-purpose) datasets and then analyze the performance gap. We use HumanEval
and CodeSearchNet (Golang) [17] as the open-domain code corpora. HumanEval is a widely used
benchmark for evaluating code generation models [8, 34]. CodeSearchNet is a benchmark for
evaluating code comprehension tasks. The benchmark was collected from miscellaneous projects
in GitHub and was processed unbiasedly.

3.4.2 Quantitative Results. Table 2 shows the quantitative results. Overall, all three models
demonstrate a decline in performance on domain-specific datasets compared to open-domain
datasets, which conforms to our hypothesis. For ChatGPT-3.5, the average BLEU score on

4https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU

78:8 X. Gu et al.

Fig. 1. Code examples generated by ChatGPT.

domain-specific datasets drops by 70.35% compared to the score on CodeSearchNet, while the
average CodeBLEU drops by 51.48%.

We have noted that non-popular libraries (such as Prometheus) tend to experience a more
significant performance decline compared to others. This is likely due to the fact that there is
less open source code that utilizes the domain-specific library available for LLM training. On the
contrary, gRPC-go and Cocos2d-x exhibit exceptionally high performance in code-oriented LLMs.
Upon manual examination, we observe monotonous code patterns in functions that utilize these
two libraries, such as gRPC server handler functions and Cocos2d-x interface functions from C++
to Lua. Such repetitive knowledge is more easily learned by the models.

Notably, ChatGPT outperforms the code-oriented LLMs in the open-domain dataset. This phe-
nomenon can be explained by the fact that general-purpose LLMs are trained on a vast amount
of diverse data, which enables them to learn a broad range of knowledge. This makes them better
suited for open-domain tasks requiring a more general language understanding.

3.4.3 Qualitative Results. To find out which aspects of the models fall short of domain-specific
code generation, we also qualitatively examined the ChatGPT-generated code manually. We ran-
domly sample 200 functions from the library-specific dataset. For each function, we use the function
signature as a prompt and let ChatGPT complete the function body. We check if the generated code
has implemented the desired functionality as in the original reference code, and we pay particular
attention to the invoke of domain libraries.

Overall, of the 200 model-generated functions sampled, we observed that 32 functions were
correct (16%), 37 implemented functionality completely different from the reference code (18.50%),
52 had problems with API misuse (26%), and 79 had problems with missing APIs (39.50%). We
hereby summarize common mistakes that appear in the model-generated code (Figure 1).

(1)Misused API Calls.The generated code is similar in format to the reference code, but the actual
functionality is incorrectly implemented due to wrong API calls, we refer to this kind of mistake
as misused API calls. An example is shown in Figure 1(a). The reference function RegisterRouter
registers an HTTP API router, with a gin.RouterGroup object passed as a parameter. The correct API
to be called is router.Group, which returns a router group for later use, while the model-generated
code used router.GET, which is also an API of the Gin library, but conducts a different activity:
handling a GET request.Therefore, the generated code functionality is inconsistent with the demand
given by the function signature.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:9

(2) Missing API Calls. In some cases, we observed the model-generated code is missing one
or several APIs compared to the reference code, resulting in a deviation of the implemented
functionality from the expected functionality. We refer to this issue as missing API Calls. As shown
in Figure 1(b), the reference code invokes gin.Con text.HandlerName to retrieve a name for the
handler and passes it as a parameter to app.StartTransaction. While in the model-generated code,
this API call is missing, leading to wrong parameters for the next API call.

In summary, most of the mistakes in domain-specific code generation are related to API misusage,
leading to our conclusion that existing LLMs are unfamiliar with the API usages of certain domain-
specific libraries.

Finding 1: LLMs exhibit sub-optimal performance in generating domain-specific code, specifically
due to their limited proficiency in utilizing domain libraries.

3.5 RQ2: Prompting LLMs for Domain-Specific Code Generation
Based on the evaluation results in RQ1, we have found that LLMs underperform in the domain-
specific code generation task, which we attribute to LLMs’ lack of domain-specific knowledge by
observation. Therefore, we assume that incorporating domain-specific knowledge into LLMs can
improve the quality of code generation. In the view of programming, domain knowledge typically
refers to the usage of third-party libraries or packages, namely, API documentation. For instance, in
Web development using Golang, the GinWeb framework is commonly used to enhance productivity
and performance. The details of the Gin API, such as the names and descriptions of its functions,
are examples of domain-specific knowledge.

Another question is how to incorporate domain knowledge into LLMs. As a direct and cost-
effective method, prompting has emerged as one of the most popular ways to engage with LLMs [6,
25, 50]. It provides LLMs with a few instructions such as intentions, demonstration examples, and a
CoTs, thereby enabling LLMs to produce desired outcomes. We hypothesize that by formulating
domain knowledge as prompts, we can effectively induce LLMs to generate domain-specific code
more proficiently.

Therefore, in RQ2, we investigate how to effectively prompt LLMs using domain knowledge and
how different forms of prompt impact the performance of domain-specific code generation. To
address this, we designed several basic knowledge-based prompts and used them to elicit ChatGPT,
themost popular LLM for both text and code generation. ChatGPT also demonstrates a superb ability
in understanding human prompts; hence, it is easier to showcase the effects of different prompts.
We study the effect of each kind of knowledge prompt separately. Moreover, we experimented
with different combinations of the basic prompts to study how the order of knowledge elements
can affect the code generation quality and how different types of knowledge can complement
each other.

3.5.1 Prompt Design. We regard the function signature as a plain prompt without any knowledge
injection. Apart from this, we designed three types of knowledge-based prompts to enhance the
code generation quality:

(1) Library import prompt: a phrase specifying the third-party library to be used.
(2) API prompt: a list of APIs to be called to implement a function, retrieved from the ground-truth

code.
(3) Docstring prompt: the natural language descriptions of the APIs, retrieved from the library

documentation.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

78:10 X. Gu et al.

Table 3. Examples of Knowledge-Enhanced Prompts

Prompt type Example

Basic prompts
Function signature Complete this function: func Routes(r *gin.Engine)

Library import Complete this function using gin: func Routes(r *gin.Engine)

API Complete this function using gin.RouterGroup.Use: func Routes(r *gin.Engine)

Docstring gin.RouterGroup.Use adds middleware to the group.

Complete this function: func Routes(r *gin.Engine)

Combined prompts
API + docstring Complete this function using gin.RouterGroup.Use.

gin.RouterGroup.Use adds middleware to the group. func Routes(r *gin.Engine)

Docstring + API gin.RouterGroup.Use adds middleware to the group.

Complete this function using gin.RouterGroup.Use: func Routes(r *gin.Engine)

Table 4. Results of Prompting ChatGPT for Domain-Specific Code Generation (CB Denotes CodeBLEU)

Gin Prometheus gRPC-go Unreal Engine Cocos2d-x Bgfx
Prompt type BLEU CB BLEU CB BLEU CB BLEU CB BLEU CB BLEU CB

Function signature 5.81 17.73 1.75 12.17 2.53 12.15 5.22 10.57 3.71 12.92 0.86 8.09
+ Library import 6.08 17.83 3.37 15.12 5.44 16.93 5.79 11.27 5.37 14.68 1.02 8.79
+ API 14.86 26.69 7.18 20.51 22.24 31.84 14.78 18.34 14.18 22.35 1.39 11.32
+ Docstring 14.56 27.04 7.04 20.78 22.07 31.74 14.58 18.35 14.06 22.35 1.33 11.40

+ Docstring 5.57 17.78 1.94 12.31 2.54 12.33 5.32 10.41 3.57 12.93 0.88 8.38
+ API 13.64 25.94 6.95 20.48 22.08 31.64 14.12 17.74 14.00 22.24 1.23 11.03

Numbers in bold denote the best results.

We also constructed two combined knowledge-based prompts: API + docstring and docstring +
API. To illustrate, we provide examples of each type of knowledge-enhanced prompt for ChatGPT-
based code generation in Table 3.

3.5.2 Results. Table 4 shows the performance of ChatGPT on library-specific datasets under
various prompt types. We use plain function signatures as a baseline and experiment with each
knowledge-enhanced prompt.

We observe result improvement on library-specific datasets when using knowledge-enhanced
prompts such as library indication and API name sequence compared to using the plain function
signature. Comparing the results of basic prompts, API sequence demonstrates a significant im-
provement, whereas library import and docstring exhibit relatively modest enhancements. The
API name sequences are closer related to the code content and have a more direct effect on code
generation. In contrast, the library import prompts do carry concise and useful information, but
in meager quantity. The API docstrings contain implicit knowledge in natural language, different
from the target programming language, which could be indirect. Furthermore, we observed that the
presence of docstrings alongside APIs does not consistently enhance performance when compared
to using APIs alone, despite occasional cases where such combined prompts achieve the highest
scores. This discrepancy may be attributed to the long text of the docstrings, which sometimes
hinders the comprehension of APIs when incorporated into the prompt.

For two combined prompts that have the same knowledge elements but in a different order, we can
see they have similar results for code generation enhancement, but API sequence + docstring prompt
is slightly better, indicating that the orders in which knowledge is organized do affect the results.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:11

Finding 2: The performance of domain-specific code generation can be improved by prompting
LLMs with domain knowledge, particularly the usage of domain libraries.

4 Code Generation with Domain Knowledge Integration
In the previous RQs, we have demonstrated that injecting API knowledge into prompts has a
positive effect on code generation. However, in real-world application scenarios, the model needs to
perform the prediction based on the input code context alone, which does not contain any prior API
knowledge. This sparks an idea of automatically incorporating knowledge into code generation:
We can extend code LLMs by constantly inquiring about API knowledge from a knowledge base
and using it to prompt the next code fragments. In this section, we experiment with three strategies
to integrate knowledge into code-generation LLMs and compare their effectiveness. Specifically,
we aim to address the following RQs:

RQ3: How to effectively integrate domain knowledge in the code generation process?

—RQ3.1: Is API recommendation useful for automatically prompting LLMs to generate domain-
specific code?

—RQ3.2: Is CoT useful for automatically prompting LLMs to generate domain-specific code?
—RQ3.3: By fine-tuning, can we further enhance the effectiveness of CoT for LLMs?

We introduce the three experimental strategies in the following sections and then present our
empirical results.

4.1 Prompting LLM by Inquiring External Knowledge
Perhaps the most straightforward approach for injecting knowledge into a code LLM is to train an
external knowledge inquiring model named kg-GPT. This strategy consists of two modules, one for
API knowledge inquiry and the other for code generation, as illustrated in Figure 2(a). Given the
input function signature, the API knowledge inquirer recommends a sequence of possible APIs
that could be used to implement a function. Then, the LLM takes the predicted API sequence and
the input function signature as a prompt to generate the function body.

The API inquirer is realized as a GPT trained using causal language modeling, and each training
sequence is composed of a function signature and its corresponding API usages. In this way, it
can generate a list of APIs by predicting the next sequence when given the function signature as a
context. To introduce the domain-specific API knowledge, we add the predicted API list as a line of
comment above the function signature, forming a combined prompt. We then feed the hint to the
LLM, which generates the function body. Owing to the API knowledge in the prompts, it inclines
to generate code containing the recommended APIs.

4.2 Prompting LLMs with CoT
While kg-GPT accomplishes the initial goal of incorporating domain knowledge into LLMs, it does
so in a shallow fashion. We hypothesize that a more fine-grained integration of domain knowledge
into the generation process has the potential to improve the overall generation performance.
Inspired by the CoT-PT [49] for LLMs, we experiment with the second strategy that incorporates
knowledge into the code generation process in a CoT manner.

4.2.1 Programming as a CoT Process. To deal with a complex task, one often adopts a multi-step
thinking strategy, which is to break down the original task into a series of sub-tasks and solve them
step by step. This thinking process is known as CoT [49]. CoT-PT has been proven to be effective in
improving the reasoning capabilities of LLMs [19, 40].

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

78:12 X. Gu et al.

Fig. 2. Illustration of the three experimented strategies for knowledge integration.

Like reasoning, programming is also a task that requires careful logical thinking [52]. When faced
with a programming task to implement a complex requirement, one often thinks in a CoT manner
[10]. This is natural since a complete code segment (e.g., a function) can usually be decomposed
into multiple sub-activities [43], each containing one or a few statements. We refer to a sub-activity
as a step in the coding process. At each step, one decides what action should be taken based on
former contexts and how it should be implemented. For domain-specific code, this decomposition
of activities is much related to API calls of third-party libraries [32, 33]. An API acts like an
intermediary, providing developers with functionality implemented by a third-party library. One
statement calling an API can be regarded as a separable sub-activity.

Having formulated code generation as a chain of thinking steps, we attempt to integrate knowl-
edge into each step through prompting. We introduce knowledge states to simulate the implicit
states in the thinking process. A knowledge state corresponds to a short code sub-segment, it
consists of an API state and a task state. The API state suggests one or more APIs to be used
to accomplish this sub-task, and the task states describe the action to be performed. Combined
together, they summarize the chain of operations bound to each step.

The generation process involves three sub-tasks: understanding current input, including formerly
written code and corresponding states, predicting the next knowledge state, and generating the next
code snippet. The three steps are executed in a loop until we have generated a complete function
body or the maximum generation length is reached.

Figure 3 shows an example of a function generation process in a CoT manner. We take a
function signature as input, where the function name HandleGetRequest indicates that the re-
quirement is to handle GET requests, and the parameter c *gin.context points to the Gin library.
Based on the input, the model generates code step by step. At step 0, it first predicts the API

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:13

Fig. 3. A CoT view of code generation.

state gin.Context.Query and the task state get the request parameter. The states suggest that
the following code should perform the task of retrieving the request parameter using the API
gin.Context.Query. Then conditioned on the code history (which is the function signature for
step 0) and the current state, the model generates code for step 0, param := c.Query(“param”).
Similarly, the model continues to recursively predict code with the states at each step, until the end
of the function is reached. If no API is required, we mark it as an empty state and simply skip the
API prediction for this step.

4.2.2 Overall Design. Figure 2(b) illustrates the design of this strategy. It consists of two modules,
one for prompt generation and the other for code generation. The prompt generator is realized
with an external knowledge enquiring model kg-GPT as shown in Figure 2(a), it predicts the next
possible API based on the API state history or input function signature. For each step, the prompt
generator predicts an API state based on the state history. The corresponding API docstring is
appended as the task state. The generated API and task states are combined with the code history
and used as a prompt for the LLM, which then predicts code for the current step.

4.3 CoT-FT
When prompting with CoT, the prompt generation module relies only on API state history for
prediction, which lacks information on code syntax and structure, affecting the prediction accuracy.
To improve the quality of predicted APIs, we experiment with the third strategy to predict API
state conditioning on code history, namely, CoT-FT, as illustrated in Figure 2(c). In this strategy, we
combine all sub-steps together and fine-tune a single language model in an end-to-end fashion. For
each function, we construct a training sequence, which consists of a user input function signature
and an output code segment decomposed as = steps. At a step C , the model reads the history �C−1,
then generates a knowledge state C and a code snippet �C , concatenated as (C = [C ,�C]. The
history includes the user input �0 and all previously generated C−1 steps [(0, (1, ...(C−1]:

�C−1 = [�0, (0, (1, ...(C−1] .

Conditioned on the history, the model first predicts a knowledge state C , which consists of an API
sequence and a task description:

 C = !" (�C−1).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

78:14 X. Gu et al.

Table 5. Examples of API Knowledge

API name API docstring

gin.BasicAuth Returns a Basic HTTP authorization middleware
gin.Context.Abort Prevents pending handlers from being called
gin.Context.JSON Serializes a given struct as JSON

This knowledge state is then appended to the history, forming a complete context. The model
conditions on this input to generate code for step C :

�C = !" ([�C−1, C]).

Combining each step, the overall code generation process is shaped as

 0,�0, 1,�1, ... =,�= = !" (�0).

After removing the states, the final generated code is obtained:

� =�0,�1 ...�= .

We adopt the end-to-end training method by combining all steps as a single training sequence
and fine-tuning a causal language model (i.e., Transformer decoder) [46]. A complete training
sequence is concatenated by one user input and all sub-sequences, shaped like [�0, (0, (1 ... (=]. By
causal language modeling, the model is trained to predict the probability of the next token based
on all former tokens. In this way, we can model the joint probability over the entire sequence.

4.4 Experimental Setup
Collecting API Knowledge. To evaluate code generation with domain knowledge, we extend the
domain-specific dataset for RQ1 and RQ2 (Section 3.1) with domain knowledge. We are concerned
with knowledge about certain libraries, including the APIs and their corresponding natural language
docstring, organized in a dictionary format. As Table 5 depicts, an API name is a unique identifier
of a specific function in a third-party library, and an API docstring provides a supplementary and
more detailed explanation of its behavior.

We obtain API calls from the collected functions in the original dataset. For each function, we
parse the code using tree-sitter.5 We identify all <variable name, variable type> pairs in a function
from the parameter definition and variable declaration statements; if the variable type is a struct
or a class defined in the target library, we mark the corresponding variable as targeted. We then
identify all call expression statements and extract the names of the called function. If the call
expression contains our target package/class identifier or the called function is initiated by a target
variable, we mark it as a target API. API names are then used as queries to retrieve document
strings from the knowledge base.

We obtain API docstring either from the API documentation or from the library source code.
For libraries with comprehensive official API reference documentation, including Unreal Engine,
Cocos2d-x, and Bgfx, we extract knowledge directly from the document by crawling the Web
page, then keep the pairwise API declarations and descriptions. For libraries without a document,
including Gin, gRPC-go, and Prometheus, we use tree-sitter to parse the source code of the library,
extracting each function with a corresponding docstring if there exists one. We use the function
name as the API name and docstring as the API description.

5https://tree-sitter.github.io/tree-sitter/

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://tree-sitter.github.io/tree-sitter/

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:15

TheparsedAPI calls and docstrings are integrated into each function for the CoT-FT. To implement
knowledge integration while conforming to the programming language format, we add the API
call and docstrings as comments above each corresponding call expression statement.

Backbone Models. We employ PolyCoder [51], StarCoder [23], and CodeLlama [39] as backbone
LLMs, which are well-established open sourcemodels trained on GitHub code. Considering our com-
putational resources, all fine-tuning experiments were only carried out on PolyCoder. PolyCoder is
based on GPT-2, which is easy to develop and deploy. More importantly, it demonstrates compet-
itive performance to GPT-3 counterparts [51]. We employ the released checkpoint of pre-trained
PolyCoder-2.7B, StarCoder-15.5B,6 and CodeLlama-7B7 for all experiments. We implement the API
inquirer (kg-GPT) by employing a standard GPT-2 model with 12 layers and 768 dimensionality.
Training and Prediction. We train all models in a server with 8 Nvidia A100 (40 GB) GPU cards.

To fine-tune the backbone PolyCoder, we follow the hyper-parameter configurations in the original
paper [51], with a batch size of 32 and a learning rate of 1.64-4. We train the API inquirer with a
batch size of 16 and a learning rate of 54-5.

We randomly sample 500 functions from each dataset to conduct the prediction and evaluation.
For each function, we configure the model to generate new tokens until we either encounter the
termination token <EOF> or reach a maximum token length of 256, then truncate the output to
the end of the function. For the CoT models, we do not count the tokens occupied by knowledge
states in the overall length.

Comparison Methods. We compare our approach with all backbone LLMs in the zero-shot setting,
which refers to prompting the pre-trained checkpoint without any further fine-tuning. We also
compare DomCoder with a few-shot learning method proposed by Ahmed and Devanbu [1],
which prepend a few in-context examples in the LLM context. We randomly sample 10 in-context
examples that invoke the same library to the target domain. Besides the zero-shot setting, we are
also concerned with the fine-tuning strategy of our method. Specifically, we compare DomCoder
(CoT-FT) with PolyCoder fine-tuned on the domain-specific dataset.

4.5 Results
The evaluation results for all methods and strategies are shown in Table 6. Under both the zero-shot
and the fine-tuning settings, BLEU and CodeBLEU scores rise when the model is knowledge-
enhanced, and the CoT-FT strategy reaches the best scores.

Under the zero-shot setting, both the kg-GPT and CoT-PT strategies improve the results, with
kg-GPT demonstrating better performance. API knowledge introduced by kg-GPT raised the BLEU
scores by 49.33% on average and the CodeBLEU scores by 9.82%. Under the fine-tuning setting, CoT
raised the BLEU scores by 17.10% on average and the CodeBLEU scores by 4.20%. Furthermore, we
can see that the performance is improved more significantly on datasets with poor zero-shot results,
such as prometheus and Unreal Engine. Comparatively, the CoT-FT strategy provides modest
improvement, except for the CodeBLEU scores for some libraries such as gin and prometheus. Both
kg-GPT and CoT-PT incorporate API knowledge into the zero-shot PolyCoder, and the differences
in results could be attributed to their distinct knowledge-integration strategies. Kg-GPT predicts
all states of APIs at once, whereas CoT-PT predicts APIs incrementally based on historical states,
which do not contain information about code syntax and structure, resulting in unstable quality of
the predicted APIs.

Domain fine-tuning improves the results compared to zero-shot, as it allows the model to learn
about domain-specific code most straightforwardly. Still, by injecting the knowledge into training

6https://huggingface.co/bigcode/starcoder
7https://huggingface.co/codellama/CodeLlama-7b-hf

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://huggingface.co/bigcode/starcoder
https://huggingface.co/codellama/CodeLlama-7b-hf

78:16 X. Gu et al.

Table 6. Performance of Various API Knowledge Integration Strategies (CB Denotes CodeBLEU)

Model Gin Prometheus gRPC-go Unreal Engine Cocos2d-x Bgfx
BLEU CB BLEU CB BLEU CB BLEU CB BLEU CB BLEU CB

PolyCoder (zero-shot) 8.13 17.05 1.77 12.11 55.36 57.52 0.94 9.87 13.83 23.83 0.76 7.16
+In-context learning [1] 8.18 16.36 2.01 12.57 55.54 57.11 0.96 0.98 13.27 23.00 0.83 7.24
+ DomCoder (kg-GPT) 9.91 18.16 2.29 12.76 56.87 58.30 1.26 10.20 15.33 24.09 0.78 7.34
+DomCoder (CoT-PT) 9.17 17.41 2.21 12.65 55.97 57.70 1.38 10.15 16.13 24.91 0.91 7.87
PolyCoder (fine-tuning) 20.62 27.18 5.88 17.11 62.97 63.37 1.57 11.10 27.65 32.67 1.01 11.80
+DomCoder (CoT-FT) 21.12 27.51 7.59 19.13 63.23 63.83 2.26 11.69 29.30 33.99 1.05 11.95
StarCoder (zero-shot) 8.46 17.55 1.68 12.37 58.69 60.09 0.58 9.00 14.08 23.56 0.80 7.21
+In-context learning [1] 7.11 17.32 2.00 12.75 58.12 59.07 1.14 10.76 18.62 26.55 1.12 7.93
+DomCoder (kg-GPT) 13.12 20.44 3.75 14.74 60.41 61.85 1.74 10.98 22.43 27.53 1.20 8.67
+DomCoder (CoT-PT) 12.46 19.77 3.32 13.66 59.91 61.25 1.64 10.96 20.78 25.81 1.17 8.42
CodeLlama (zero-shot) 8.47 18.07 1.79 13.13 57.61 60.39 0.73 10.21 16.76 25.87 0.55 7.72
+In-context learning [1] 8.22 18.58 2.69 13.87 59.35 61.49 0.81 10.35 17.90 27.06 0.60 8.47
+DomCoder (kg-GPT) 11.71 19.83 2.62 13.41 55.93 58.24 0.99 10.55 19.58 27.71 0.65 8.66
+DomCoder (CoT-PT) 11.75 19.90 3.07 14.58 56.03 58.69 1.15 11.15 16.39 25.16 0.57 8.21

Numbers in bold denote the best results.

Table 7. Performance of Kg-GPT in API Recommendation

Model Gin Prometheus gRPC-go Unreal Engine Cocos2d-x Bgfx
BLEUHitratio BLEUHitratio BLEUHitratio BLEUHitratio BLEUHitratio BLEUHitratio

PolyCoder 16.81 0.03 8.02 0.03 32.09 0.37 7.47 0.04 30.10 0.33 3.32 0.01
CodeLlama 21.64 0.06 12.42 0.04 36.92 0.38 9.50 0.07 35.91 0.36 6.73 0.03
Kg-GPT 46.48 0.36 27.16 0.20 52.67 0.67 16.48 0.09 57.24 0.50 34.25 0.28

Numbers in bold denote the best results.

data in a CoT fashion, the performance is raised to a higher level. We note that the improvement
that CoT-FT brings to PolyCoder is relatively marginal. Nevertheless, it demonstrates that the
proposed CoT knowledge integration is also useful in the fine-tuning mode despite still having
ample room for further improvement.

Note that, in most cases, BLEU scores are smaller than CodeBLEU scores. Particularly, in Unreal
Engine and Bgfx, CodeBLEU score is 10 times of BLEU score. It is caused by the metric design:
BLEU only evaluates the n-gram match, while CodeBLEU examines a combination of the n-gram
match, syntax match, and dataflow match. In practice, a low n-gram match could come with a high
syntax match and dataflow match, especially when the generated code has correct functionality
but different variable names.

As an essential part, we assess the accuracy of the APIs recommended by kg-GPT.This evaluation
holds significance since it influences the language model’s performance in code generation relying
on the suggested API sequences. We employ the same dataset outlined in Section 4.4 for training
the kg-GPT. We measure the quality of API recommendations using BLEU and Hit Ratio. The Hit
Ratio refers to the percentage of correctly recommended APIs out of the total number of predicted
APIs. A higher Hit Ratio indicates a better performance of the API recommendation by the kg-GPT.
For comparison, we provide the results of API recommendation by PolyCoder-2.7B. These results
are obtained by extracting API sequences from the predicted code by PolyCoder. The results are
presented in Table 7. We obverse that kg-GPT recommends domain API sequences with high
accuracy. For example, it achieves 10 times the accuracy in the Bgfx library in terms of BLEU score.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:17

Fig. 4. Examples of generated code.

4.6 Qualitative Analysis
We inspected the code generated by various methods and presented cases to illustrate their effec-
tiveness. Figure 4 presents an example of code generation by various methods.

We take a function using the Gin library as an example. As its name indicates, the reference
function ensures the logged-in status is False. It checks the logged-in status using gin.Context.Get
and aborts using gin.AbortWithStatus if it’s True.

For this function, we compare the results of all strategies. Among them, the CoT-FT strategy
generates the best result. Through step-by-step generation, it first predicts the task description and
API name as the knowledge state and then generates code to implement the task in the description
using the API. Since it correctly predicts the state at each step, it eventually generates the correct
code segment that meets the requirements. Comparatively, all other methods give more or less
erroneous results. For example, the code generated by the PolyCoder-FT called several APIs of the
targeted gin library, but none of them is correct, failing to fulfill the requirements.

Finding 3: The performance of domain-specific code generation can be improved through domain
knowledge integration in the generation process of LLMs.

4.7 Industry Study
To fully assess the effectiveness of DomCoder, we perform an in-house industry study on Tencent
Inc, a world-famous IT company. Our study focuses on the domain of messenger Apps (e.g., WeChat,
QQ) which are the predominant products of this company. We start by creating a survey about the
domain libraries that are mostly adopted by the developers in the group of messenger products.
Results show that an internal library called tRPC-go (https://github.com/trpc/trpc) ranked as the
most popular one that is utilized by the group. We therefore selected functions that utilize this
library and evaluate the performance of DomCoder in completing these functions. To ensure that
the selected functions are representative and distinct, we specifically chose functions containing
three to seven APIs. Functions with identical API sequences were clustered into groups. These
function groups were then sorted based on the number of functions they contained, in descending
order. From each class, we randomly selected one function. Additionally, we manually filtered out
functions that developers may find challenging to understand. As a result, we obtained a set of 30
test functions for evaluation.

We built DomCoder based on CodeLlama-7B and applied it to complete the selected test functions.
We test the kg-GPT strategy which demonstrates the best performance in the quantitative study
and is easier to deploy. We measure the performance using two metrics: (1) task relevance, which

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://github.com/trpc/trpc

78:18 X. Gu et al.

Table 8. Performance of DomCoder in the Industry Study

Model Task relevance Semantic correctness
CodeLlama-7B (zero-shot) 20/30 6/30
- w/ DomCoder (kg-GPT) 28/30 18/30

means that the generated content satisfies the intention in the function signature, and (2) semantic
correctness, which means that the implemented function body is semantically correct. We asked
three developers from the relevant team in Tencent to rate the evaluation criteria independently.
Conflicts were resolved through discussion until a consensus was reached.

The results are presented in Table 8. We find that DomCoder significantly enhances the quality of
generated code. The semantic correctness of the generated code by DomCoder is triple that of the
code generated by the original CodeLlama-7B. The results confirm the effectiveness of DomCoder
in wider application scenarios and metrics in the industry.

5 Discussions
5.1 Future Directions
Based on our findings, we suggest three possible future directions for domain-specific code genera-
tion by LLMs.

First, programming knowledge can extend beyond API documentation. We suggest future re-
search to consider more sources of domain knowledge in the design of prompts and the integration
of knowledge. Regarding syntax, more comprehensive information about third-party libraries
could be helpful, including class descriptions, relationships between classes, and other relevant
information. For code semantics, descriptive and explanatory information from sources like Stack
Overflow could be useful. Moreover, knowledge about a certain domain such as workflows and
code templates could also be useful.

Second, results on RQ2 demonstrate that docstrings also play an important role in the design of
prompts. But this presents a new challenge of increasing the code length. In addition, the ability
to understand and generate natural language descriptions is relatively limited for code-oriented
models. We suggest future research to design better mechanisms to integrate knowledge into code,
bridging the information gap between programming language and natural language. For example,
we can consider pre-training tasks that jointly predict code and knowledge.

The results of the kg-GPT strategy suggest that a separate knowledge enquirer can be an
effective way to incorporate knowledge with code. In the future, researchers can focus on de-
signing more sophisticated knowledge inquirers. For example, they can build a QA or search
engine that detects any factual knowledge and provides the prompt during the code generation
process.

The results also show that CoT is an efficient way to incorporate knowledge into LLMs in both
fine-tuning and usage stages. In the future, researchers could explore integrating knowledge in the
early stage of LLM training. Instead of training a casual language model on plain code, they could
augment code with API knowledge and use it in pre-training. They could also decompose source
code into sub-modules, each representing a specific sub-activity, and generate the modules in a
certain order as a simulation of CoT.

5.2 Threats to Validity
The empirical study in this research investigates three LLMs. In particular, the code-specific LLMs
we studied are limited to a parameter size not exceeding 2.7B. Considering the rapid development

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:19

of LLMs, the LLMs studied in this article may not fully represent all the latest advancements in
large-scale models. Furthermore, while our investigation primarily focuses on code generation
tasks in the domains of Web and game development, it is essential to recognize that code generation
is a ubiquitous task across a wide range of domains. Therefore, the findings obtained from the two
particular domains can potentially offer general insights applicable in various contexts. Regarding
the evaluation metrics, we have utilized BLEU and CodeBLEU. Although these two metrics are
widely used in code intelligence research, they may not fully represent human experience.

6 Conclusion
In this article, we conduct an empirical study on domain-specific code generation by LLMs. Our
study finds that LLMs such as ChatGPT exhibit sub-optimal performance in generating domain-
specific code, and adding knowledge prompts about domain libraries improves the performance.
To further investigate how to incorporate API knowledge into LLMs, we design three experimental
strategies to automatically prompt LLMs, including inquiring about an external kg-GPT, CoT-PT,
and CoT-FT. Our experimental results show the effectiveness of knowledge integration in both
zero-shot and fine-tuning settings. We hope our study can inspire future work on improving the
code generation capabilities of LLMs for specific domains.

References
[1] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for project-specific code-summarization. In

Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, 1–5.
[2] Open AI. 2023. ChatGPT. Retrieved from https://openai.com/blog/chatgpt
[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie

Cai, Michael Terry, Quoc Le, et al. 2021. Program synthesis with large language models. arXiv:2108.07732. Retrieved
from https://arxiv.org/abs/2108.07732

[4] Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor
Leahy, Kyle McDonell, Jason Phang, et al. 2022. GPT-NeoX-20B: An open-source autoregressive language model.
In Proceedings of BigScience Episode# 5–Workshop on Challenges & Perspectives in Creating Large Language Models,
95–136.

[5] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large scale autoregressive
language modeling with mesh-tensorflow. DOI: https://doi.org/10.5281/zenodo.5297715

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. In Proceedings of the
Advances in Neural Information Processing Systems, Vol. 33, 1877–1901.

[7] Jialun Cao, Meiziniu Li, MingWen, and Shing-chi Cheung. 2023. A study on prompt design, advantages and limitations
of ChatGPT for deep learning program repair. arXiv:2304.08191. Retrieved from https://arxiv.org/abs/2304.08191

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv:2107.03374. Retrieved from https://arxiv.org/abs/2107.03374

[9] Xiusi Chen, Yu Zhang, Jinliang Deng, Jyun-Yu Jiang, and Wei Wang. 2023. Gotta: Generative few-shot question
answering by prompt-based cloze data augmentation. In Proceedings of the 2023 SIAM International Conference on
Data Mining (SDM ’23). SIAM, 909–917.

[10] Yu Cheng, Jieshan Chen, Qing Huang, Zhenchang Xing, Xiwei Xu, and Qinghua Lu. 2024. Prompt sapper: A LLM-
empowered production tool for building AI chains. ACM Transactions on Software Engineering and Methodology 33, 5
(June 2024), Article 124, 24 pages. DOI: https://doi.org/10.1145/3638247

[11] YunSeok Choi and Jee-Hyong Lee. 2023. CodePrompt: Task-agnostic prefix tuning for program and language genera-
tion. In Findings of the Association for Computational Linguistics (ACL ’23), 5282–5297.

[12] Kayla DePalma, Izabel Miminoshvili, Chiara Henselder, Kate Moss, and Eman Abdullah AlOmar. 2024. Exploring
ChatGPT’s code refactoring capabilities: An empirical study. Expert Systems with Applications 249 (2024), 123602.

[13] Xi Ding, Rui Peng, Xiangping Chen, Yuan Huang, Jing Bian, and Zibin Zheng. 2024. Do code summarization models
process toomuch information? Function signaturemay be all what is needed.ACMTransactions on Software Engineering
and Methodology 33, 6 (June 2024), Article 160, 35 pages. DOI: https://doi.org/10.1145/3652156

[14] Sidong Feng and Chunyang Chen. 2024. Prompting is all your need: Automated android bug replay with large language
models. In Proceedings ofthe IEEE/ACM 46th International Conference on Software Engineering (Lisbon, Portugal)

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://openai.com/blog/chatgpt
https://arxiv.org/abs/2108.07732
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2304.08191
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3638247
https://doi.org/10.1145/3652156

78:20 X. Gu et al.

(ICSE ’24). Association for Computing Machinery, New York, NY, Article 67, 13 pages. DOI: https://doi.org/10.1145/
3597503.3608137

[15] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and Xin Peng. 2024. Exploring the
potential of ChatGPT in automated code refinement: An empirical study. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, 1–13.

[16] Emilia Hansson and Oliwer Ellréus. 2023. Code correctness and quality in the era of AI code generation: Examining
ChatGPT and GitHub Copilot. Master thesis. 69 pages. Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:
diva-121545

[17] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2020. CodeSearchNet
challenge: Evaluating the state of semantic code search. arXiv:1909.09436. Retrieved from https://arxiv.org/abs/1909.
09436

[18] Kailun Jin, Chung-Yu Wang, Hung Viet Pham, and Hadi Hemmati. 2024. Can ChatGPT support developers? An
empirical evaluation of large language models for code generation In MSR ’24: Proceedings of the 21st International
Conference on Mining Software Repositories. Association for Computing Machinery, New York, NY, 167–171. DOI:
https://doi.org/10.1145/3643991.3645074

[19] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models
are zero-shot reasoners. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 35, 22199–22213.

[20] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP ’21). Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.), Association for Computational Linguistics,
3045–3059. DOI: https://doi.org/10.18653/v1/2021.emnlp-main.243

[21] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023. Skcoder: A sketch-based approach for automatic
code generation. In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE ’23).
IEEE, 2124–2135.

[22] Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. 2023. Towards enhancing in-context learning for code generation.
arXiv:2303.17780. Retrieved from https://arxiv.org/abs/2303.17780v1

[23] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. StarCoder: May the source be with you! arXiv:2305.06161. Retrieved
from https://arxiv.org/abs/2305.06161

[24] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (ACL/IJCNLP ’21). Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.), Vol. 1,
Association for Computational Linguistics, 4582–4597. DOI: https://doi.org/10.18653/v1/2021.acl-long.353

[25] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023. Improving
ChatGPT prompt for code generation. arXiv:2305.08360. Retrieved from https://arxiv.org/abs/2305.08360

[26] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by ChatGPT really
correct? Rigorous evaluation of large language models for code generation. In Proceedings of the 37th Conference on
Neural Information Processing Systems, 21558–21572.

[27] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your code generated by ChatGPT really
correct? Rigorous evaluation of large language models for code generation. In Proceedings of the Advances in Neural
Information Processing Systems, Vol. 36, 21558–21572

[28] Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du, Ying Wang, and Xin Peng. 2023. CodeGen4Libs: A two-stage
approach for library-oriented code generation. In Proceedings of the 38th International Conference on Automated
Software Engineering (ASE ’23), 434–445. DOI: https://doi.org/10.1109/ASE56229.2023.00159

[29] Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2024. No need to lift a finger anymore?
Assessing the quality of code generation by ChatGPT. IEEE Transactions on Software Engineering 50, 6 (2024), 1548–1584.
DOI: https://doi.org/10.1109/TSE.2024.3392499

[30] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco Oliveto, and
Gabriele Bavota. 2023. On the robustness of code generation techniques: An empirical study on GitHub copilot. In
Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE ’23). IEEE, 2149–2160.

[31] Nathalia Nascimento, Paulo Alencar, and Donald Cowan. 2023. Artificial intelligence vs. software engineers: An
empirical study on performance and efficiency using ChatGPT. In Proceedings of the 33rd Annual International
Conference on Computer Science and Software Engineering, 24–33.

[32] Phuong Thanh Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta. 2020. CrossRec: Supporting
software developers by recommending third-party libraries. Journal of Systems and Software 161 (2020). DOI: https:
//doi.org/10.1016/j.jss.2019.110460

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-121545
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-121545
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.1145/3643991.3645074
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://arxiv.org/abs/2303.17780v1
https://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2305.08360
https://doi.org/10.1109/ASE56229.2023.00159
https://doi.org/10.1109/TSE.2024.3392499
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460

On the Effectiveness of LLMs in Domain-Specific Code Generation 78:21

[33] Phuong Thanh Nguyen, Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and Massimiliano Di Penta. 2021. Recom-
mending API function calls and code snippets to support software development. arXiv:2102.07508. Retrieved from
https://arxiv.org/abs/2102.07508

[34] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
2022. CodeGen: An open large language model for code with multi-turn program synthesis. In Proceedings of the 11th
International Conference on Learning Representations. Retrieved from https://arxiv.org/abs/2203.13474

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
311–318.

[36] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models Are
Unsupervised Multitask Learners. Retrieved from https://api.semanticscholar.org/CorpusID:160025533

[37] Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason Wei. 2022. A recipe for
arbitrary text style transfer with large language models. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics, Vol. 2. Association for Computational Linguistics, 837–848.

[38] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco,
and Shuai Ma. 2020. CodeBLEU: A method for automatic evaluation of code synthesis. arXiv:2009.10297. Retrieved
from https://arxiv.org/abs/2009.10297

[39] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal
Remez, Jérémy Rapin, et al. 2023. Code Llama: Open foundation models for code. arXiv:2308.12950. Retrieved from
https://arxiv.org/abs/2308.12950

[40] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi
Tay, Sebastian Ruder, Denny Zhou, et al. 2022. Language models are multilingual chain-of-thought reasoners. In
Proceedings of the 11th International Conference on Learning Representations. Retrieved from https://openreview.net/
forum?id=fR3wGCk-IXp

[41] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. 2023. Repository-level prompt generation for large language
models of code. In Proceedings of the International Conference on Machine Learning. PMLR, 31693–31715.

[42] Mohammed Latif Siddiq, Joanna Cecilia Da Silva Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and
Vinícius Carvalho Lopes. 2024. Using large language models to generate JUnit tests: An empirical study. In Proceedings
of the 28th International Conference on Evaluationand Assessment in Software Engineering (EASE ’24). Association for
Computing Machinery, New York, NY, 313–322. DOI: https://doi.org/10.1145/3661167.3661216

[43] Jiamou Sun, Zhenchang Xing, Rui Chu, Heilai Bai, Jinshui Wang, and Xin Peng. 2019. Know-how in programming
tasks: From textual tutorials to task-oriented knowledge graph. In Proceedings of the 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME ’19). IEEE, 257–268.

[44] Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. 2022. Natural Language Processing with Transformers. O’Reilly
Media, Inc.

[45] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language models. In Proceedings of the Chi Conference on Human Factors in
Computing Systems Extended Abstracts, 1–7.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, 5998–6008.

[47] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. Retrieved
from https://github.com/kingoflolz/mesh-transformer-jax

[48] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R. Lyu. 2022. No more
fine-tuning? An experimental evaluation of prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 382–394.

[49] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny
Zhou. 2022. Chain-of-thought prompting elicits reasoning in large language models. In Proceedings of the Neural
Information Processing Systems (NeurIPS ’22), 24824–24837. Retrieved from http://papers.nips.cc/paper_files/paper/
2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[50] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023. ChatGPT prompt patterns for
improving code quality, refactoring, requirements elicitation, and software design. arXiv:2303.07839. Retrieved from
https://arxiv.org/abs/2303.07839

[51] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A systematic evaluation of large
language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming,
1–10.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://arxiv.org/abs/2102.07508
https://arxiv.org/abs/2203.13474
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fR3wGCk-IXp
https://doi.org/10.1145/3661167.3661216
https://github.com/kingoflolz/mesh-transformer-jax
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2303.07839

78:22 X. Gu et al.

[52] Imam Nur Bani Yusuf, Lingxiao Jiang, and David Lo. 2022. Accurate generation of trigger-action programs with
domain-adapted sequence-to-sequence learning. In Proceedings of the 30th IEEE/ACM International Conference on
Program Comprehension, 99–110.

[53] Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Wang Yongji, and Jian-Guang Lou. 2022. When language model meets
private library. In Findings of the Association for Computational Linguistics (EMNLP ’22), 277–288.

[54] Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, and Jian-Guang
Lou. 2023. CERT: Continual pre-training on sketches for library-oriented code generation. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22. Lud De Raedt (Ed.), International Joint
Conferences on Artificial Intelligence Organization, 2369–2375. DOI: https://doi.org/10.24963/ijcai.2022/329 Main
Track

[55] Shuai Zhao, Jinming Wen, Luu Anh Tuan, Junbo Zhao, and Jie Fu. 2023. Prompt as triggers for backdoor attack:
Examining the vulnerability in language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. Houda Bouamor, Juan Pino, and Kalika Bali (Eds.), Association for Computational Linguistics,
Singapore, 12303–12317. DOI: https://doi.org/10.18653/v1/2023.emnlp-main.757

[56] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang, Yang
Li, Teng Su, Zhilin Yang, and JieTang. 2023. CodeGeeX: A pre-trained model for code generation with multilingual
benchmarking on HumanEval-X. In Proceedings of the 29thACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’23). Association for Computing Machinery, NewYork, NY, 5673–5684. DOI: https://doi.org/10.1145/
3580305.3599790

Received 4 December 2023; revised 4 July 2024; accepted 19 August 2024

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 78. Publication date: February 2025.

https://doi.org/10.24963/ijcai.2022/329
https://doi.org/10.18653/v1/2023.emnlp-main.757
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Generation
	2.2 Prompting LLMs
	2.3 Code Generation with Domain Libraries
	2.4 Studies on Code Generation with LLMs

	3 Experimental Evaluation
	3.1 Data Collection
	3.2 Evaluated Language Models
	3.3 Evaluation Metrics
	3.4 RQ1: Effectiveness of LLMs in Domain-Specific Code Generation
	3.5 RQ2: Prompting LLMs for Domain-Specific Code Generation

	4 Code Generation with Domain Knowledge Integration
	4.1 Prompting LLM by Inquiring External Knowledge
	4.2 Prompting LLMs with CoT
	4.3 CoT-FT
	4.4 Experimental Setup
	4.5 Results
	4.6 Qualitative Analysis
	4.7 Industry Study

	5 Discussions
	5.1 Future Directions
	5.2 Threats to Validity

	6 Conclusion
	References

